人工智能芯片初创公司SiMa Technologies Inc.今日宣布,其专为多模态物理AI工作负载设计的第二代系统级芯片平台正式出货。
这款名为MLSoC Modalix的新芯片旨在嵌入机器人、工业设备、车辆等设备中。
该芯片采用系统级模块设计,匹配主流图形处理器的引脚配置和外形规格,使其能够作为运行AI模型的边缘设备的物理"大脑"。该芯片允许公司运行各种AI系统,包括Meta Platforms Inc.的Llama等大语言模型、卷积神经网络、Transformer模型、视觉语言模型以及其他机器学习算法。
物理AI是指人工智能与物理系统的结合,包括机器人、自动驾驶汽车和智能设备。这种集成使这些系统能够感知环境、与环境交互并从经验中学习。它结合了大语言模型等AI算法,使其能够处理来自摄像头和其他传感器的数据,然后基于这些信息做出决策。
该技术严重依赖于能够在边缘处理计算的低功耗硬件,小型计算机可以处理大量传感器数据并直接在车辆或机器人中运行AI模型,而无需将其卸载到云端。数据需要处理的位置距离行动现场越远,机器人或机器做出反应的往返时间就越长。当需要做出安全或关键决策时,或者当网络不可用时,这种延迟就成为问题。
该公司去年首次发布了Modalix机器学习系统级芯片,今天宣布该系统和芯片组正式出货,可立即供应。
据SiMa.ai介绍,Modalix系统级模块将通过提供能够处理多种模型并轻松集成到现有系统中的芯片,帮助运营商满足行业对边缘市场不同类型AI系统的多样化需求。
SiMa.ai表示,它与电子设计自动化领域的领先公司Synopsys Inc.合作开发和创新这款新芯片,加速设计并在创纪录的时间内实现无缺陷硅片。
"物理AI应用的开发需要经过验证的、专用的硅片和软件,这只有使用最先进的设计解决方案才能实现,"Synopsys首席产品管理官Ravi Subramanian表示。
除了Modalix系统级模块外,SiMa.ai还推出了LLiMa,这是一个用于在设备上运行大语言模型、视觉语言模型等的统一框架。它使开发人员能够快速将开源和自定义AI模型导入到Modalix就绪的二进制文件中,同时还支持物理AI应用的众多库。
视觉语言模型(VLM)将大语言模型的功能与视觉推理相结合,允许它们处理文本和图像,这对于对图像或视频的组件进行分类和理解至关重要。与机器人或其他系统结合,VLM可用于自动化产品和零件的视觉检查以识别缺陷并确保质量标准,使机器人能够理解并基于自然语言命令执行任务,通过供应链跟踪和监控产品等。
"物理AI时代已经到来!随着Modalix现在投入生产,我们正在加速其全球采用,"SiMa.ai创始人兼首席执行官Krishna Rangasayee表示。
Rangasayee补充说,在全球发布之前,对系统级模块的需求一直很强劲。该模块和开发套件今天可从SiMa.ai获得,用于1000台的企业部署,8GB系统级模块起价349美元,32GB系统级模块起价599美元每台。开发套件定价为1499美元。
Q&A
Q1:MLSoC Modalix芯片有什么特殊功能?
A:MLSoC Modalix是SiMa.ai推出的第二代系统级芯片,专为多模态物理AI工作负载设计。它能够运行各种AI系统,包括大语言模型、卷积神经网络、Transformer模型、视觉语言模型等,可作为机器人、工业设备、车辆等边缘设备的物理"大脑"。
Q2:什么是物理AI?它有什么应用?
A:物理AI是人工智能与物理系统的结合,包括机器人、自动驾驶汽车和智能设备。它使这些系统能够感知环境、与环境交互并从经验中学习。应用包括自动化产品质量检查、使机器人理解自然语言命令执行任务、供应链产品跟踪监控等。
Q3:MLSoC Modalix芯片的价格是多少?
A:MLSoC Modalix现已正式出货,用于1000台的企业部署。8GB系统级模块起价349美元每台,32GB系统级模块起价599美元每台,开发套件定价为1499美元。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。