GPU租赁服务商CoreWeave在周三继续其AI服务领域的扩张,推出了一个旨在让企业客户更容易获得强化学习技术的平台。
强化学习是机器学习的一种方法,模型通过试错来自我学习,对积极结果给予奖励,对消极结果进行惩罚。在过去一年中,这种方法作为微调语言模型的手段越来越受欢迎。例如,DeepSeek R1的"推理"能力就是通过强化学习实现的。
CoreWeave周三推出的无服务器强化学习平台建立在其最近收购的两家公司基础上:专门使用强化学习构建定制AI智能体的OpenPipe,以及提供GPU加速工作负载无服务器平台的Weights & Biases。
在这种情况下,无服务器架构很有意义,因为工作负载可以分布在可用的空闲或未充分利用的GPU上,消除资源闲置。此外,许多AI工作负载本质上是无状态的,这意味着它们不需要存储先前会话的信息就能工作。
根据CoreWeave的说法,这消除了客户手动配置虚拟机或裸机服务器来使用强化学习构建定制AI智能体的需要。相反,他们只需为微调过程中生成的Token付费。
如果CoreWeave的说法可信,这种方法比使用本地托管的英伟达H100快约1.4倍,成本降低约40%。
目前,CoreWeave通过Weights & Biases平台提供这项服务。然而,展望未来,这家新兴云服务商旨在将其AI服务业务扩展到新领域。
就在本周,该公司宣布收购Monolith AI,这家公司专门从事不同类型的AI。与生成式模型不同,Monolith使用AI来加速传统上属于高性能计算的物理和工程仿真。
CoreWeave进军AI服务业务是其更广泛努力的一部分,旨在实现客户群多样化。无论好坏,其客户群一直由大型超大规模云服务商、云提供商和模型构建者主导。当该公司今年早些时候申请上市时,在其IPO招股说明书中警告称,2024年收入的77%来自两个客户,没有任何其他单一客户贡献超过10%的收入。现在情况可能没那么严峻,谷歌和IBM都是其客户,但尽管如此,对于这家负债累累的公司来说,多样化仍然至关重要。
Q&A
Q1:CoreWeave的无服务器强化学习平台有什么优势?
A:该平台消除了客户手动配置虚拟机或裸机服务器的需要,用户只需为微调过程中生成的Token付费。工作负载可以分布在可用的空闲GPU上,避免资源浪费,比使用本地英伟达H100快约1.4倍,成本降低约40%。
Q2:强化学习在AI领域有什么应用?
A:强化学习是一种机器学习方法,模型通过试错自我学习,对积极结果奖励,对消极结果惩罚。目前主要用于微调语言模型,例如DeepSeek R1的推理能力就是通过强化学习实现的,在过去一年中越来越受欢迎。
Q3:CoreWeave为什么要推出AI服务业务?
A:CoreWeave希望实现客户群多样化。根据其IPO招股说明书,2024年收入的77%来自两个客户,过度依赖大型超大规模云服务商、云提供商和模型构建者。作为一家负债累累的公司,多样化对其发展至关重要。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。