全球食品饮料行业正在经历重大变革,这种变革不仅由顶级厨师和各类营销人员推动,还受到基于AI系统的影响。在这种情况下,技术对食品公司来说不再是未来主义的现实,因为它影响着该行业的众多领域,包括配方开发、减少浪费、可持续发展倡议以及预测供应链中断的方法。
雀巢在其众多业务领域使用生成式AI也不例外。但尽管背后有着巨大的热情,任何突破性技术都无法创造奇迹,非常有前景的用例也存在过度扩张或犯严重错误的风险,特别是在数据道德使用或自动化方面。
对于IT和技术决策者来说,挑战并不在于首先认识到AI的附加价值,而更多的是他们必须培养能够负责任地扩展该技术的文化、技能和系统。
雀巢通过AI优化的领域
食品行业一直需要应对不确定性,比如收成波动、物流瓶颈以及不断变化的消费者偏好,这些都让规划变得困难。雀巢现在越来越多地使用AI来比以前更好、更准确地预测需求模式,并动态调整生产和库存水平。具体而言,该技术用于预测集装箱到达目的港的时间、创建统计预测以及提高需求规划的准确性。
除此之外,AI还用于配方开发。为了加速创意生成和产品开发,机器学习模型分析历史研发数据。这些不是实验或试点项目,而是已经产生结果的生产性管道。
但仅有运营效率是不够的。要让AI产生真正的影响,它还必须支持包括可持续发展在内的总体目标,这是食品行业面临的最大挑战之一,再生农业和创新包装在其中发挥着关键作用。通过AI,可以进一步放大这些效果。
雀巢集团全球技术创新和企业架构负责人卢卡·德洛莱塔表示:"我们目前正在探索AI模型如何在复杂的农业供应链中优化碳追踪,以实现更智能的采购决策并大规模减少排放。在制造业中,AI驱动的视觉系统可以最大限度地减少浪费并改善能源使用,这也有助于雀巢实现其环境承诺。"
但即使AI被整合到运营的核心结构中,公司也不会忽视技术不应该取代或削弱定义高品质食品工艺和人性化的价值观。
AI没有免费通行证
生成式AI最诱人的特点之一是其速度,能够几乎瞬间生成营销内容、文案或产品概念。但更快并不一定意味着更好。食品受文化影响并唤起情感,在一个地区引起共鸣的东西在另一个地区可能完全适得其反。这就是为什么雀巢拥有人机协作系统,使本地团队能够调整全球解决方案。德洛莱塔说:"我们只能警告不要让算法在没有监督的情况下管理创意任务。"
除此之外,在产品测试和消费者研究方面还存在偏见担忧,特别是当数据集不能完全反映全球消费者多样性时。对于像雀巢这样的跨国食品公司来说,负责任地扩展AI还应该包括在数据层面对多样性的承诺。
在这个新时代,IT决策者不再只是技术合作伙伴,而是协调各种转型推动者的增长驱动者和数据守护者。因此,AI的成功不取决于部署最新模型,而是获得人才、治理,并以符合品牌目标和风险承担的方式鼓励实验。这涉及一个一致地扩展到所有职能领域、部门和整个业务价值流的综合层面。
他说:"我们相信将AI作为核心竞争力而非附加功能的食品公司最终会获胜。这不是关于谁自动化得最快,而是重新思考事物并拥抱新工作方式的能力。"
Q&A
Q1:雀巢如何使用AI优化其业务运营?
A:雀巢使用AI预测需求模式并动态调整生产和库存水平,预测集装箱到达目的港时间,创建统计预测,提高需求规划准确性。在配方开发方面,机器学习模型分析历史研发数据来加速创意生成和产品开发。
Q2:雀巢在使用生成式AI时面临哪些挑战?
A:主要挑战包括文化适应性问题,因为食品受文化影响且在不同地区反应不同;数据偏见问题,特别是在产品测试和消费者研究中;以及需要人工监督,避免算法在没有监督的情况下管理创意任务。
Q3:AI如何帮助雀巢实现可持续发展目标?
A:AI模型优化复杂农业供应链中的碳追踪,实现更智能的采购决策并大规模减少排放。在制造业中,AI驱动的视觉系统最大限度减少浪费并改善能源使用,帮助雀巢实现环境承诺。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。