谷歌已经建立了一个人工智能模型,可以分析人体胸部的CT扫描结果,以确定他们是否患有肺癌。
该公司今天在博客文章中详细介绍了这款软件,这是谷歌两年开发工作的成果。作为美国国立卫生研究院的一项研究的一部分,谷歌使用从15,000名患者中采集的42,000次胸部扫描数据集训练人工智能检查肿瘤。在完成了培训阶段的工作后,谷歌的研究人员使用了来自西北大学的大约3,800张CT图像来评估人工智能的准确性。
谷歌将该模型得出的结论和六名放射科医生进行了对比,这些放射科医生平均有八年的临床经验。在一项测试中,所有的参与者仅被允许检查每位患者的一张CT图像,人工智能确定的癌症病例比专家确定的病例数多5.5%,假阳性率降低11%。在可以获得多张扫描图像的测试中,该模型和放射科医生们得出的结果几乎相同。
除了证明它能够和训练有素的医疗专业人员水平相当之外,该人工智能还被证明能够识别肺结节,这是一种在大多数情况下是良性,但有时候可能会变成癌细胞的小块组织。它们通常很难被发现,因为它们在CT图像中看起来像是微弱的白色阴影。
根据谷歌的说法,它的人工智能不仅可以发现结节,还可以比较一段时间内进行的扫描,以确定结节的增长是否显示出恶性迹象。在分析初步筛查两年后拍摄的CT图像时,该模型发现的癌症发生率比放射科医师多9.5%。
谷歌在最新一期《自然医学》杂志上发表了一篇学术论文,详细介绍了该项目。此外,该公司还计划通过Cloud Healthcare API提供该人工智能模型,Cloud Healthcare API是针对医疗行业的公共云服务和功能的集合。
谷歌该项目的技术负责人Shravya Shetty 写道:“尽管肺癌检查有价值,但今天只有2-4%符合条件的美国患者接受了筛查,……这项工作证明了人工智能可以提高准确性和一致性的潜力,这有助于加速全球肺癌筛查的采用。”
好文章,需要你的鼓励
在2026年CES展会上,一款名为Sweekar的AI电子宠物亮相,被誉为90年代经典Tamagotchi的完美继承者。这款智能宠物从蛋形开始,随着成长会物理性变大,经历婴儿期、青少年期到成年期的完整生命周期。每个阶段都有不同的护理需求和互动方式,从基础语言学习到形成独特个性。与原版相比,Sweekar融入了先进AI技术,提供更丰富的长期体验。该产品将通过Kickstarter众筹,售价150美元。
瑞士ETH苏黎世联邦理工学院等机构联合开发的WUSH技术,首次从数学理论层面推导出AI大模型量化压缩的最优解。该技术能根据数据特征自适应调整压缩策略,相比传统方法减少60-70%的压缩损失,实现接近零损失的模型压缩,为大模型在普通设备上的高效部署开辟了新路径。
西班牙CTIC RuralTech创新中心运用AI等前沿技术解决农业面临的气候变化等重大挑战。通过气候模拟系统和土地使用智能分析,农户可以监测作物、预测不同种植条件下的结果,如同拥有时光机器。草莓生产商利用模拟器预测疾病影响和气候变化效应,奶酪制造商则用AI分析牛奶数据,确定最适合生产特定奶酪的原料。这些技术应用大幅提高了农业可持续性和效率。
弗吉尼亚大学团队创建了Refer360数据集,这是首个大规模记录真实环境中人机多模态交互的数据库,涵盖室内外场景,包含1400万交互样本。同时开发的MuRes智能模块能让机器人像人类一样理解语言、手势和眼神的组合信息,显著提升了现有AI模型的理解准确度,为未来智能机器人的广泛应用奠定了重要基础。