谷歌已经建立了一个人工智能模型,可以分析人体胸部的CT扫描结果,以确定他们是否患有肺癌。
该公司今天在博客文章中详细介绍了这款软件,这是谷歌两年开发工作的成果。作为美国国立卫生研究院的一项研究的一部分,谷歌使用从15,000名患者中采集的42,000次胸部扫描数据集训练人工智能检查肿瘤。在完成了培训阶段的工作后,谷歌的研究人员使用了来自西北大学的大约3,800张CT图像来评估人工智能的准确性。
谷歌将该模型得出的结论和六名放射科医生进行了对比,这些放射科医生平均有八年的临床经验。在一项测试中,所有的参与者仅被允许检查每位患者的一张CT图像,人工智能确定的癌症病例比专家确定的病例数多5.5%,假阳性率降低11%。在可以获得多张扫描图像的测试中,该模型和放射科医生们得出的结果几乎相同。
除了证明它能够和训练有素的医疗专业人员水平相当之外,该人工智能还被证明能够识别肺结节,这是一种在大多数情况下是良性,但有时候可能会变成癌细胞的小块组织。它们通常很难被发现,因为它们在CT图像中看起来像是微弱的白色阴影。
根据谷歌的说法,它的人工智能不仅可以发现结节,还可以比较一段时间内进行的扫描,以确定结节的增长是否显示出恶性迹象。在分析初步筛查两年后拍摄的CT图像时,该模型发现的癌症发生率比放射科医师多9.5%。
谷歌在最新一期《自然医学》杂志上发表了一篇学术论文,详细介绍了该项目。此外,该公司还计划通过Cloud Healthcare API提供该人工智能模型,Cloud Healthcare API是针对医疗行业的公共云服务和功能的集合。
谷歌该项目的技术负责人Shravya Shetty 写道:“尽管肺癌检查有价值,但今天只有2-4%符合条件的美国患者接受了筛查,……这项工作证明了人工智能可以提高准确性和一致性的潜力,这有助于加速全球肺癌筛查的采用。”
好文章,需要你的鼓励
知名的投资机构ICONIQ Capital发布了《开发者手册:2025年AI现状报告》,基于对300位企业高管的调研,包括CEO、工程负责人、AI负责人和产品负责人等关键决策者,涵盖了从初创公司到十亿美元巨头的各个发展阶段,深度剖析了当下企业AI产品应用的全貌,为我们呈现了一个从"如何构思、交付和规模化AI驱动业务"的完整路线。
中科大团队开发出LongAnimation系统,解决了长动画自动上色中的色彩一致性难题。该系统采用动态全局-局部记忆机制,能够为平均500帧的动画进行稳定上色,性能比现有方法提升35-58%。核心创新包括SketchDiT特征提取器、智能记忆模块和色彩优化机制,可大幅提升动画制作效率。
南开大学团队开发出DepthAnything-AC模型,解决了现有AI距离估算系统在恶劣天气和复杂光照条件下性能下降的问题。通过创新的扰动一致性训练框架和空间距离约束机制,该模型仅用54万张图片就实现了在雨雪、雾霾、夜晚等复杂环境下的稳定距离判断,同时保持正常条件下的优秀性能,为自动驾驶和机器人导航等应用提供了重要技术支撑。