谷歌已经建立了一个人工智能模型,可以分析人体胸部的CT扫描结果,以确定他们是否患有肺癌。
该公司今天在博客文章中详细介绍了这款软件,这是谷歌两年开发工作的成果。作为美国国立卫生研究院的一项研究的一部分,谷歌使用从15,000名患者中采集的42,000次胸部扫描数据集训练人工智能检查肿瘤。在完成了培训阶段的工作后,谷歌的研究人员使用了来自西北大学的大约3,800张CT图像来评估人工智能的准确性。
谷歌将该模型得出的结论和六名放射科医生进行了对比,这些放射科医生平均有八年的临床经验。在一项测试中,所有的参与者仅被允许检查每位患者的一张CT图像,人工智能确定的癌症病例比专家确定的病例数多5.5%,假阳性率降低11%。在可以获得多张扫描图像的测试中,该模型和放射科医生们得出的结果几乎相同。
除了证明它能够和训练有素的医疗专业人员水平相当之外,该人工智能还被证明能够识别肺结节,这是一种在大多数情况下是良性,但有时候可能会变成癌细胞的小块组织。它们通常很难被发现,因为它们在CT图像中看起来像是微弱的白色阴影。
根据谷歌的说法,它的人工智能不仅可以发现结节,还可以比较一段时间内进行的扫描,以确定结节的增长是否显示出恶性迹象。在分析初步筛查两年后拍摄的CT图像时,该模型发现的癌症发生率比放射科医师多9.5%。
谷歌在最新一期《自然医学》杂志上发表了一篇学术论文,详细介绍了该项目。此外,该公司还计划通过Cloud Healthcare API提供该人工智能模型,Cloud Healthcare API是针对医疗行业的公共云服务和功能的集合。
谷歌该项目的技术负责人Shravya Shetty 写道:“尽管肺癌检查有价值,但今天只有2-4%符合条件的美国患者接受了筛查,……这项工作证明了人工智能可以提高准确性和一致性的潜力,这有助于加速全球肺癌筛查的采用。”
好文章,需要你的鼓励
家庭智能设备中的AI技术正在发挥惊人作用,包括摄像头的深度物体和活动识别、升级版语音助手如Alexa Plus/Gemini,以及能够节省开支的机器学习功能。这些应用涵盖包裹识别、声音监测、智能恒温器学习日常习惯、宠物行为识别、对话式语音控制、用水监测和漏水检测,以及视频事件摘要等七大功能,为用户提供更智能便捷的家居体验。
ByteDance等机构联合提出DLCM模型,通过学习语义边界动态分配计算资源,将AI从统一令牌处理转向层次化概念推理。该模型引入压缩感知缩放定律,在12项零样本测试中平均提升2.69%准确率,为构建更智能高效的AI系统开辟新路径。
MacPaw最新调查显示,自M1芯片发布五年来,Mac设备在企业中的使用寿命显著延长。近半数受访企业的Mac使用3-5年仍保持良好性能,这得益于M系列芯片出色的稳定性和能效表现。IT团队正转向自动化管理工具和AI辅助workflow来应对人手不足的挑战。虽然设备更耐用减少了硬件更换频率,但IT部门面临的安全威胁和管理复杂性持续增加,需要更简化的软件更新流程。
香港中文大学团队突破AI记忆瓶颈,提出HGMEM超图记忆机制。该技术让AI具备类似人类的联想思维,能将分散信息整合成高阶理解。通过动态记忆演化和智能检索,显著提升了复杂推理能力,在长文本理解任务中全面超越现有方法,为AI向"知识理解者"转变开辟新路径。