IDC对人工智能边缘处理器的首个预测显示,2019年全球面向边缘系统的AI优化处理器出货量将达到3.401亿个,比2018年增长170.0%,到2023年出货量将达到15个,实现64.9%的五年复合年增长率(CAGR)。
人工智能的出现正在颠覆微处理器市场。虽然通用处理器和图形处理器单元(GPU)的开发,给体积更小、移动性更高、由电池供电的设备带来了巨大的计算能力,但这些处理器并不是神经网络推理解决方案的理想平台。与通用架构相比,AI优化的处理器带有独立的加速器和主机处理器,在处理器中集成了神经网络加速器,使得运行AI解决方案的性能要高通用架构。如今主要的提供商都在顺应这一趋势,开发能够解决满足这一新计算模式的解决方案,一些新兴处理器提供商也进入这个市场,其中包括一系列风投支持的半导体初创公司发布了新的IP和加速器。
随着人工智能解决方案在网络边缘不断扩展,以及人工智能工作负载不再局限于基本的系统优化任务,对于这种AI优化的处理器来说,市场机会越来越多。2018年运行AI的边缘系统中只有5.1%采用了优化的处理器。到2023年,这一比例预计将达到40.5%。到2023年,AI优化的处理器收入预计将达到404亿美元,复合年增长率为86.4%。
该预测中提到的边缘系统包括主要客户端,例如PC、手机、平板电脑;边缘基础设施网关和服务器;部署在企业、政府和家庭网络边缘的端点和物联网设备。边缘AI处理器的一些关键应用领域包括汽车高级驾驶员辅助系统(ADAS)、游戏系统、智能家居和视频监控,其他主要市场包括工业自动化、医疗设备、AR/VR设备、机器人和无人机等。
IDC赋能技术和半导体研究团队研究主管Michael J. Palma表示:“人工智能的成功在于部署到边缘的系统,在边缘位置,神经网络做出的即时决策是可以创造价值的,不受延迟和连接问题的限制,而这正是云解决方案所面对的一大挑战。边缘AI能否取得成功要取决于高效计算处理元件的开发,这些元件针对AI工作负载进行了优化,支持大多数边缘系统功率受限的特性。目前,离散加速器提供了最佳性能,但也增加了BOM成本,最终能否取得成功可能要取决于在主机处理器中AI优化处理元件的集成。”
好文章,需要你的鼓励
软件开发瓶颈是现代企业面临的关键挑战。本文探讨了消除瓶颈的有效策略,包括优化沟通、提高可视化、自动化流程和培养共同责任文化。专家建议通过异步更新、看板管理和自动化工具来提高效率。同时强调了数据质量、跨团队协作和持续改进的重要性。文章还提到了新兴技术如AI在解决瓶颈问题中的潜在应用。
随着人工智能技术的发展,深度伪造内容在网络上大量涌现,可能对我们的健康造成潜在威胁。从虚假名人代言到有害的AI生成医疗建议,深度伪造正在助长一波危险的虚假信息浪潮。本文探讨了深度伪造在医疗保健领域的负面影响,以及如何在这个充满虚假信息的时代保护自己的健康。
INCYMO.AI 推出了一个革新性的 AI 驱动创意平台,专注于移动游戏广告制作。该平台基于 10 万多个市场验证广告的数据分析,通过 AI 技术为游戏营销人员提供创意构思和广告生成服务。在创意疲劳、用户获取成本上升和隐私限制的当前环境下,该平台为游戏营销开辟了一条数据驱动的全新道路。
Databricks 与 Palantir 签署合作协议,开发出更优的大语言模型微调方法,并与 Anthropic 达成为期五年的战略联盟,将 Claude 大语言模型整合到其数据湖平台中。此次合作将为企业客户提供更强大的 AI 能力,包括军工级安全性、高效的模型训练以及全面的数据治理,助力企业打造专属 AI 应用。