6月22日5时50分,国家气象中心强天气预报中心使用AI预报广东省多地对流云团将持续增强,预报结果显示未来短时强降雨发生的可能性较大。7时10分,深圳市气象台发布暴雨红色分区预警,深圳市通知全市中小学生停课,7时至9时,深圳遭遇暴雨袭击,全城道路漫水。
6月22日5时50分,国家气象中心用AI预报未来1小时广东深圳等地将有强降雨发生。
此次国家气象中心预测广东多地区突发强降雨采用的是雷达反射率临近预报AI算法,该AI算法由达摩院和国家气象中心联合研发,实现了全国范围雷达回波的未来0-3小时精细化预报,同时将预测精精度最小为1公里范围,可辅助预报员预测临近时段内突发性的强对流天气。
深圳市气象台于6月22日7时10分发布暴雨红色预警,随后深圳市全市中小学停课。
强对流天气来势凶猛、变化迅速,因此及时准确的短临天气预报能够有效指导防灾减灾,在公众出行、交通、水利等领域都具有重要作用。过去几十年,基于雷达数据的线性外推方法一直是业界预测短临强对流天气的主要途径,但该方法难以对强对流系统的生成、发展、减弱和消散等过程进行预测,预报效果有限。
目前,全球各地气象机构纷纷探索用AI来解决强对流天气预测难的问题。AI能从海量历史数据中,提取对流系统生消演变规律,从而具备较好的强对流系统未来生消演变的预报能力,可解决传统预报方法效率低的难题。
达摩院与国家气象中心联合研发的AI算法在预测精准度和精细度上双双实现突破。该算法采用时空分离的卷积神经网络,利用达摩院自研的方向自注意力卷积,对大气的聚合消散过程进行建模,准确高效的提取时空特征;设计了同化模块,有机结合地形数据、雷达、卫星数据等多源观测数据,可将预报时效延长至3小时;此外,该算法采用全新的生成对抗训练方法,显著提升预报图像的清晰度,可实现全国范围内的雷达回波实时预报。
据介绍,今年3月,该 AI算法首次在国家气象中心进行业务试验,截至目前,已成功预测多次强天气现象。例如,3月30日贵州多地遭遇冰雹袭击,预报员参考AI的预测结果,进行深入的研判分析,相关部门提前发出预警信息。
2020年9月,达摩院发布天、空、地多源数据精准分析平台AI Earth,该平台可对卫星影像、无人机影像、实时视频流、气象数据、IoT数据等多源地球观测数据进行融合分析,在气象预测领域,该平台已具备短临天气预测能力。
好文章,需要你的鼓励
随着AI模型参数达到数十亿甚至万亿级别,工程团队面临内存约束和计算负担等共同挑战。新兴技术正在帮助解决这些问题:输入和数据压缩技术可将模型压缩50-60%;稀疏性方法通过关注重要区域节省资源;调整上下文窗口减少系统资源消耗;动态模型和强推理系统通过自学习优化性能;扩散模型通过噪声分析生成新结果;边缘计算将数据处理转移到网络端点设备。这些创新方案为构建更高效的AI架构提供了可行路径。
清华大学团队开发了CAMS智能框架,这是首个将城市知识大模型与智能体技术结合的人类移动模拟系统。该系统仅需用户基本信息就能在真实城市中生成逼真的日常轨迹,通过三个核心模块实现了个体行为模式提取、城市空间知识生成和轨迹优化。实验表明CAMS在多项指标上显著优于现有方法,为城市规划、交通管理等领域提供了强大工具。
Meta以143亿美元投资Scale AI,获得49%股份,这是该公司在AI竞赛中最重要的战略举措。该交易解决了Meta在AI发展中面临的核心挑战:获取高质量训练数据。Scale AI创始人王亚历山大将加入Meta领导新的超级智能研究实验室。此次投资使Meta获得了Scale AI在全球的数据标注服务,包括图像、文本和视频处理能力,同时限制了竞争对手的数据获取渠道。
MIT研究团队发现了一个颠覆性的AI训练方法:那些通常被丢弃的模糊、失真的"垃圾"图片,竟然能够训练出比传统方法更优秀的AI模型。他们开发的Ambient Diffusion Omni框架通过智能识别何时使用何种质量的数据,不仅在ImageNet等权威测试中创造新纪录,还为解决AI发展的数据瓶颈问题开辟了全新道路。