就在SIGGRAPH(年度人工智能学术会议)召开期间,Nvidia宣布推出一个新平台,旨在让用户在PC或工作站上创建、测试和定制生成式人工智能模型,然后将其扩展到数据中心和公有云中。
“为了推动AI大众化,我们必须让它几乎可以在任何地方运行,”Nvidia创始人兼首席执行官黄仁勋在大会上表示。
被称为AI Workbench的服务可以通过在本地工作站上运行的界面访问,开发人员可以使用它来微调和测试来自Hugging Face和GitHub等流行社区的算法模型,并在需要扩展时访问云计算资源。
Nvidia计算副总裁Manuvir Das表示,推出AI Workbench是为了定制AI大模型。企业级人工智能项目可能需要在多个数据库中寻找合适的框架和工具,当项目需要从一个基础设施转移到另一个基础设施时,这个过程变得更加复杂。
当然,将企业模型投入生产的成功率很低。
来自KDnuggets的一项调研数据显示,大多数数据科学家表示,在部署机器学习模型之前,他们的项目中有超过80%是停滞不前的。根据Gartner的另一个预测数据,接近85%的大数据项目失败,都是因为基础设施障碍导致的。
“全球企业正在竞相寻找合适的基础设施并构建生成式AI模型和应用程序,”Das在一份预先准备的声明中表示。“Nvidia AI Workbench为跨组织团队创建基于人工智能的应用程序提供了一条简化的路径,这在现代商业中变得越来越重要。” 关于这条“简化”路径到底有多简化,目前还没有定论。但根据Das的观点是,AI Workbench允许开发人员从开源资源中汇集模型、框架、SDK和库,包括用于数据准备和数据可视化的库,进入一个统一的工作空间。
随着对人工智能(尤其是生成式人工智能)的需求增长,越来越多专注于将大型通用模型微调为特定用例的工具随之出现。像Fixie、Reka和Together这样的初创公司旨在使公司和个人开发人员能够更轻松地根据自己的需求定制模型,而无需支付昂贵的云计算费用。
通过AI Workbench,Nvidia提供了一种更为分散的微调方法,即在本地机器上进行,而不是在云服务上进行。这是有道理的,因为Nvidia及其产品组合的人工智能加速GPU将受益;Nvidia在宣布这一消息的新闻稿中并不掩饰其RTX系列产品的提及。但是,除了Nvidia的商业动机之外,这个提议可能会吸引那些不希望受制于单一云或服务进行人工智能模型实验的开发人员。
由于对GPU的人工智能驱动需求,Nvidia的收益达到了新的高度。
今年5月,该公司的市值曾一度达到1万亿美元,此前一季度的收入为71.9亿美元,比上一财季增长了19%。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。