2023年12月28日,逐际动力首次公开人形机器人的动态测试,机器人代号为CL-1,率先实现了人形机器人从实时地形感知,到步态规划,到全身控制的全栈闭环,动态完成上楼梯、下斜坡和室内外行走等复杂场景。
在测试中,逐际动力人形机器人CL-1实时感知脚下地形,主动调整步态,平顺地从平地踏上台阶,并完成动态上楼梯,动作平稳流畅。登上平台后,CL-1踏步向前,稳稳当当地走下了15度的斜坡。CL-1更从室内走到了户外,在不同环境下进行运动测试,从下午一直到傍晚,动态表现同样稳定出色。
据逐际动力官方表示,这是国内首款基于实时地形感知动态上楼梯的人形机器人,CL-1在测试全过程保持动态运动,和全身的协调与平衡,这有赖于逐际动力先进的运动控制和AI算法,以及基于软件自研的高性能关节。随着技术不断迭代,逐际动力的人形机器人将陆续投入到危险场景、高端服务、汽车制造和家庭服务等To B和To C的应用场景。
在环境感知方面,逐际动力CL-1增加了环境感知算法,实现了感知、控制、硬件的全回路打通,让人形机器人突破盲走的局限,实现与复杂地形实时的交互运动。
在硬件设计方面,其全自研高性能关节具备优异的抗冲击性能、精准且快速的扭矩控制能力。在确保高性能的同时,该设计方案也兼顾了生产制造的成本和效率优化,为整机的批量化生产奠定了基础。
在AI算法方面,逐际动力官方表示,他们对人形机器人能力的定义是:以人为中心,去人能去的地方、做人能做的事情。逐际动力不针对机器人具体的功能、形态和应用场景及其变化而定制不同的算法,不管是手臂或者双腿的运动,是四轮足或者人形机器人,都基于同一套核心算法。逐际动力专注于运动控制算法的研发,以通用AI算法释放人形机器人强大的泛化能力,让人形机器人成为AGI在物理世界的最佳载体。
逐际动力创立于2022年, 创始人张巍是南方科技大学长聘教授、机器人研究院副院长、深圳鹏城学者特聘教授,并任 IEEE Transactions on Control System Technology 副主编,是机器人和自动化领域的国际知名学者。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。