2023年12月28日,逐际动力首次公开人形机器人的动态测试,机器人代号为CL-1,率先实现了人形机器人从实时地形感知,到步态规划,到全身控制的全栈闭环,动态完成上楼梯、下斜坡和室内外行走等复杂场景。
在测试中,逐际动力人形机器人CL-1实时感知脚下地形,主动调整步态,平顺地从平地踏上台阶,并完成动态上楼梯,动作平稳流畅。登上平台后,CL-1踏步向前,稳稳当当地走下了15度的斜坡。CL-1更从室内走到了户外,在不同环境下进行运动测试,从下午一直到傍晚,动态表现同样稳定出色。
据逐际动力官方表示,这是国内首款基于实时地形感知动态上楼梯的人形机器人,CL-1在测试全过程保持动态运动,和全身的协调与平衡,这有赖于逐际动力先进的运动控制和AI算法,以及基于软件自研的高性能关节。随着技术不断迭代,逐际动力的人形机器人将陆续投入到危险场景、高端服务、汽车制造和家庭服务等To B和To C的应用场景。
在环境感知方面,逐际动力CL-1增加了环境感知算法,实现了感知、控制、硬件的全回路打通,让人形机器人突破盲走的局限,实现与复杂地形实时的交互运动。
在硬件设计方面,其全自研高性能关节具备优异的抗冲击性能、精准且快速的扭矩控制能力。在确保高性能的同时,该设计方案也兼顾了生产制造的成本和效率优化,为整机的批量化生产奠定了基础。
在AI算法方面,逐际动力官方表示,他们对人形机器人能力的定义是:以人为中心,去人能去的地方、做人能做的事情。逐际动力不针对机器人具体的功能、形态和应用场景及其变化而定制不同的算法,不管是手臂或者双腿的运动,是四轮足或者人形机器人,都基于同一套核心算法。逐际动力专注于运动控制算法的研发,以通用AI算法释放人形机器人强大的泛化能力,让人形机器人成为AGI在物理世界的最佳载体。
逐际动力创立于2022年, 创始人张巍是南方科技大学长聘教授、机器人研究院副院长、深圳鹏城学者特聘教授,并任 IEEE Transactions on Control System Technology 副主编,是机器人和自动化领域的国际知名学者。
好文章,需要你的鼓励
亚马逊云服务部门与OpenAI签署了一项价值380亿美元的七年协议,为ChatGPT制造商提供数十万块英伟达图形处理单元。这标志着OpenAI从研究实验室向AI行业巨头的转型,该公司已承诺投入1.4万亿美元用于基础设施建设。对于在AI时代竞争中处于劣势的亚马逊而言,这项协议证明了其构建和运营大规模数据中心网络的能力。
Meta FAIR团队发布的CWM是首个将"世界模型"概念引入代码生成的32亿参数开源模型。与传统只学习静态代码的AI不同,CWM通过学习Python执行轨迹和Docker环境交互,真正理解代码运行过程。在SWE-bench等重要测试中表现卓越,为AI编程助手的发展开辟了新方向。
当今最大的AI数据中心耗电量相当于一座小城市。美国数据中心已占全国总电力消费的4%,预计到2028年将升至12%。电力供应已成为数据中心发展的主要制约因素。核能以其清洁、全天候供电特性成为数据中心运营商的新选择。核能项目供应链复杂,需要创新的采购模式、标准化设计、早期参与和数字化工具来确保按时交付。
卡内基梅隆大学研究团队发现AI训练中的"繁荣-崩溃"现象,揭示陈旧数据蕴含丰富信息但被传统方法错误屏蔽。他们提出M2PO方法,通过改进数据筛选策略,使模型即使用256步前的陈旧数据也能达到最新数据的训练效果,准确率最高提升11.2%,为大规模异步AI训练开辟新途径。