7B的模型也能玩转AI Agents了?近期,快手开源了Kwai Agents,亲测发现,问它周末滑雪问题,它不但能帮你找到场地,连当天的天气都帮你考虑周到了。
大语言模型(LLM)通过对语言的建模而掌握了大量知识,并具备一定认知和推理能力。但由于无法跟世界保持实时的交互,在单独使用的情况下,常会出现一本正经地胡说八道的现象。而AI Agents就是解决这个问题的道路之一,它通过激发大模型任务规划、反思、调用工具等能力,使大模型能够借助现实世界工具提升生成内容的准确性,甚至有能力解决复杂问题。
据了解,KwaiAgents是一个先进的AI智能体系统,由快手联合哈尔滨工业大学研发,通过使用大型语言模型来模仿人类认知技能,可应用于自然语言处理、语音识别等领域。Kwai Agents可以使7B/13B的“小”大模型也能达到超越GPT-3.5的效果,目前该项目已将系统、模型、数据、评测全部开源,使得更多的研究人员可以参与其中。
技术报告:https://arxiv.org/abs/2312.04889
项目主页:https://github.com/KwaiKEG/KwaiAgents
从「KwaiAgents」的Github主页中可以看到,本次开源内容包含:
1.系统(KAgentSys-Lite):轻量级AI Agents系统,并配备事实、时效性工具集;
2.模型(KAgentLMs):Meta-Agent Tuning后,具有Agents通用能力的系列大模型及其训练数据;
3.评测(KAgentBench):开箱即用的Agent能力自动化评测Benchmark与人工评测结果。
KAgentBench通过人工精细化标注的上千条数据,做到了开箱即用,让大家能够用一行命令评测一个大模型在不同模板下,各方面的Agents能力。下表显示了经过快手团队调优后,7B-13B模型各项能力的提升,且超越了GPT-3.5的效果:
同时,作者们还请人类标注者在200个事实性和时效性的问题(如“刘德华今年几岁了”),对不同的大模型和Agent系统进行了交叉评估,可以看到KAgentSys系统和MAT之后模型提升显著(百分号前为正确率,括号内为5分制均分)。
通常仅依赖网页搜索对一些长尾问题和热门问题返回结果不佳。比如问到“安东内拉比梅西大多少天?”这类长尾问题,往往搜索结果返回的都是一些两者的八卦新闻,而返回不了一些关键信息。而KAgentSys 通过调用百科搜索工具获取精准的出生日期,再调用time_delta时间差工具算出年龄差,就能精准回答这个问题了。
快手技术人员表示,AI Agents是一条非常有潜力的道路,未来一方面会在这个方向持之以恒地沉淀核心技术,并为整个社区不断地注入新的活力;另一方面,也会积极探索Agents技术与快手业务的结合,尝试更多有趣、有价值的创新应用落地。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。