医学图像分割技术是借助先进的计算机视觉算法,针对医学影像数据进行智能识别与精确剪裁的核心手段,在医学诊断、治疗设计以及深入的图像分析等方面扮演着至关重要的作用。医学图像分割算法融合了众多方法论,从传统的基于阈值、区域生长、分裂合并、边缘检测等原理出发,逐步发展至包含区域相似性分析的水平集、区域竞争等高级算法,再到当今前沿的机器学习和深度学习技术,诸如 U-Net、全卷积网络 (FCN)、Mask R-CNN、DeepLab 等深度学习模型的广泛应用,极大地提升了分割的精度与效率。
这个项目使用主流的深度学习框架 Pytorch + UNet来实现,项目的特点是支持训练、分割算法特别轻量化、能够一键执行训练+预测,能够适应分割结构复杂的医学图像。项目提供完整的代码,包括训练 + 预测代码、一键执行脚本、训练好的分割模型权重 (当然也支持自己训练)、项目三方依赖库 (requirements.txt)、训练标注图片、待检测的测试图片、检测后的效果图等。
在拿到项目代码后,进行开发环境的配置,老习惯用 Anaconda3 管理 py 环境,如下,
# 安装 Anaconda3,过程略 ~
# 创建conda py环境
conda create -n aipro_py39 python=3.9
# 激活conda py环境
conda activate aipro_py39
然后自行安装 pytorch,然后直接运行 run.sh
一键执行脚本即可进行三方依赖安装 + 执行训练 + 执行推理测试。run.sh
的内容很简单,如下:
# 安装三方依赖
pip install -r requirements.txt
# 执行训练 + 执行推理
python main.py
执行训练过程如下:
预测结果保存在 res
文件夹下,下面展示医学图像分割效果,分割结果以 mask 二值图的形式展示,部分分割结果如下 (左边为原图,右边为分割图),可以看到即使是边界不太清楚的结构也是可以分割的比较清楚,且项目在增加 + 丰富训练数据集后,分割效果会进一步提升。
好文章,需要你的鼓励
安迪·卡拉布蒂斯是一位杰出的CIO,她的职业生涯横跨多个行业和地区,经历了多次变革时刻。她在福特和通用汽车锻炼了领导力和技术专长,后来在戴尔、拜奥根和国家电网等公司担任高管,推动战略创新。本文总结了她对IT领导者核心技能的见解,包括战略沟通、情商、协作、远见卓识、变革管理和敏捷性等,对当今IT领导者具有重要参考价值。
边缘 AI 计算将使人形机器人、智能设备和自动驾驶等应用从数据中心和云端服务器解放出来,转移到制造车间、手术室和城市中心等场景。它能实现低延迟和自主决策,使 AI 无处不在,推动工业设施全面自动化,彻底改变商业和生活方式。边缘 AI 正在快速发展,各大科技公司纷纷推出相关硬件和软件平台,未来将为各行各业带来巨大变革。
2025年第一季度全球风投市场强劲反弹,总融资额达1130亿美元,同比增长54%。然而,资金高度集中于人工智能等少数领域和企业,OpenAI一笔400亿美元融资占全球总额的三分之一。AI领域融资总额达596亿美元,占比53%。晚期融资大幅增长,但早期和种子轮融资持续下滑,反映出初创企业融资难度加大。
Commvault 与 SimSpace 合作,为客户提供模拟环境下的网络攻击应对训练。该服务通过 SimSpace 的网络靶场技术,模拟客户环境并进行攻击演练,帮助网络防御人员提高实战能力。训练内容包括真实攻击模拟、极限恢复场景和跨部门协作演练,旨在全面提升组织的网络安全防御水平和业务恢复能力。