医学图像分割技术是借助先进的计算机视觉算法,针对医学影像数据进行智能识别与精确剪裁的核心手段,在医学诊断、治疗设计以及深入的图像分析等方面扮演着至关重要的作用。医学图像分割算法融合了众多方法论,从传统的基于阈值、区域生长、分裂合并、边缘检测等原理出发,逐步发展至包含区域相似性分析的水平集、区域竞争等高级算法,再到当今前沿的机器学习和深度学习技术,诸如 U-Net、全卷积网络 (FCN)、Mask R-CNN、DeepLab 等深度学习模型的广泛应用,极大地提升了分割的精度与效率。
这个项目使用主流的深度学习框架 Pytorch + UNet来实现,项目的特点是支持训练、分割算法特别轻量化、能够一键执行训练+预测,能够适应分割结构复杂的医学图像。项目提供完整的代码,包括训练 + 预测代码、一键执行脚本、训练好的分割模型权重 (当然也支持自己训练)、项目三方依赖库 (requirements.txt)、训练标注图片、待检测的测试图片、检测后的效果图等。
在拿到项目代码后,进行开发环境的配置,老习惯用 Anaconda3 管理 py 环境,如下,
# 安装 Anaconda3,过程略 ~
# 创建conda py环境
conda create -n aipro_py39 python=3.9
# 激活conda py环境
conda activate aipro_py39
然后自行安装 pytorch,然后直接运行 run.sh
一键执行脚本即可进行三方依赖安装 + 执行训练 + 执行推理测试。run.sh
的内容很简单,如下:
# 安装三方依赖
pip install -r requirements.txt
# 执行训练 + 执行推理
python main.py
执行训练过程如下:
预测结果保存在 res
文件夹下,下面展示医学图像分割效果,分割结果以 mask 二值图的形式展示,部分分割结果如下 (左边为原图,右边为分割图),可以看到即使是边界不太清楚的结构也是可以分割的比较清楚,且项目在增加 + 丰富训练数据集后,分割效果会进一步提升。
好文章,需要你的鼓励
DeepSeek 发布了新的大语言模型系列 R1,专为推理任务优化。该系列包括两个主要模型 R1 和 R1-Zero,采用混合专家架构,拥有 6710 亿参数。R1 在多项推理基准测试中超越了 OpenAI 的 o1 模型,而 R1-Zero 则代表了机器学习研究的重大进展。DeepSeek 已在 Hugging Face 上开源了这些模型的源代码。
国家机器人研究中心与 Freshwave 公司合作,利用私有 5G 网络测试农业机器人。这项合作旨在提升农业生产力,预计到 2026 年农业科技产业规模将达到 156 亿英镑。私有 5G 网络将为农业机器人提供高速、低延迟的连接,实现实时数据分析和精准农业操作,有望彻底改变农业生产方式。
Cognizant 推出了神经 AI 多代理加速器和服务套件,旨在帮助企业快速开发和部署 AI 代理。该技术通过预构建的代理网络模板和无代码框架,实现了跨职能的可扩展性和自主决策能力。这一创新有望推动 AI 代理在企业工作流程中的广泛应用,促进人机协作,提升业务效率和适应性。
西部数据公司财务总监Wissam Jabre将于2月28日辞职,恰逢公司分拆为硬盘和固态硬盘两个独立业务。公司正在寻找新的财务总监。尽管面临闪存业务定价环境更具挑战性,公司第二财季收入预计仍将达到43亿美元,同比增长42%。分析师认为硬盘业务表现强劲,可能抵消了闪存业务的部分疲软。