HJB 方程的推导基于动态规划原理,其核心思想是将整个时间段的优化问题分解为无数个微小时间间隔内的优化问题。
下面以 Python 实现一个简单的 HJB 方程的数值求解,使用有限差分法求解上述示例中的HJB方程。
import numpy as np
import matplotlib.pyplot as plt
# 参数设置
T = 1.0 # 终止时间
Nx = 100 # 状态变量离散化数量
Nt = 1000 # 时间离散化数量
x_max = 2.0 # 状态变量范围 [-x_max, x_max]
dt = T / Nt
dx = 2 * x_max / Nx
x = np.linspace(-x_max, x_max, Nx+1)
t = np.linspace(T, 0, Nt+1) # 时间从T到0逆向
# 初始化价值函数 V(x, T) = 0.5 * x^2
V = 0.5 * x**2
# 使用向后时间步进
for n in range(Nt):
# 计算空间导数 dV/dx
dVdx = np.zeros_like(V)
dVdx[1:-1] = (V[2:] - V[:-2]) / (2 * dx)
# 边界条件 (Neumann边界条件 dV/dx=0)
dVdx[0] = (V[1] - V[0]) / dx
dVdx[-1] = (V[-1] - V[-2]) / dx
# 更新价值函数 V_t + 0.5*(V_x)^2 = 0
V_new = V - dt * 0.5 * (dVdx)**2
V = V_new.copy()
# 可视化结果
plt.figure(figsize=(8,6))
plt.plot(x, V, label='价值函数 $V(x, 0)$')
plt.xlabel('状态变量 $x$')
plt.ylabel('价值函数 $V$')
plt.title('HJB 方程数值解')
plt.legend()
plt.grid()
plt.show()
# 计算最优控制策略 u*
u_star = -dVdx
plt.figure(figsize=(8,6))
plt.plot(x, u_star, label='最优控制 $u^*$')
plt.xlabel('状态变量 $x$')
plt.ylabel('控制变量 $u^*$')
plt.title('最优控制策略')
plt.legend()
plt.grid()
plt.show()
HJB 方程是解决动态优化和最优控制问题的强大工具。通过动态规划原理,HJB 方程将复杂的优化问题转化为偏微分方程的求解问题。尽管在高维情况下数值求解 HJB 方程可能面临维度灾难,但在低维或具有特定结构的问题中,HJB 方程提供了清晰的解析或数值解法。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。