HJB 方程的推导基于动态规划原理,其核心思想是将整个时间段的优化问题分解为无数个微小时间间隔内的优化问题。
下面以 Python 实现一个简单的 HJB 方程的数值求解,使用有限差分法求解上述示例中的HJB方程。
import numpy as np
import matplotlib.pyplot as plt
# 参数设置
T = 1.0 # 终止时间
Nx = 100 # 状态变量离散化数量
Nt = 1000 # 时间离散化数量
x_max = 2.0 # 状态变量范围 [-x_max, x_max]
dt = T / Nt
dx = 2 * x_max / Nx
x = np.linspace(-x_max, x_max, Nx+1)
t = np.linspace(T, 0, Nt+1) # 时间从T到0逆向
# 初始化价值函数 V(x, T) = 0.5 * x^2
V = 0.5 * x**2
# 使用向后时间步进
for n in range(Nt):
# 计算空间导数 dV/dx
dVdx = np.zeros_like(V)
dVdx[1:-1] = (V[2:] - V[:-2]) / (2 * dx)
# 边界条件 (Neumann边界条件 dV/dx=0)
dVdx[0] = (V[1] - V[0]) / dx
dVdx[-1] = (V[-1] - V[-2]) / dx
# 更新价值函数 V_t + 0.5*(V_x)^2 = 0
V_new = V - dt * 0.5 * (dVdx)**2
V = V_new.copy()
# 可视化结果
plt.figure(figsize=(8,6))
plt.plot(x, V, label='价值函数 $V(x, 0)$')
plt.xlabel('状态变量 $x$')
plt.ylabel('价值函数 $V$')
plt.title('HJB 方程数值解')
plt.legend()
plt.grid()
plt.show()
# 计算最优控制策略 u*
u_star = -dVdx
plt.figure(figsize=(8,6))
plt.plot(x, u_star, label='最优控制 $u^*$')
plt.xlabel('状态变量 $x$')
plt.ylabel('控制变量 $u^*$')
plt.title('最优控制策略')
plt.legend()
plt.grid()
plt.show()
HJB 方程是解决动态优化和最优控制问题的强大工具。通过动态规划原理,HJB 方程将复杂的优化问题转化为偏微分方程的求解问题。尽管在高维情况下数值求解 HJB 方程可能面临维度灾难,但在低维或具有特定结构的问题中,HJB 方程提供了清晰的解析或数值解法。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究由香港理工大学和新加坡国立大学的团队共同完成,提出了R?ec,首个将推理能力内置于大型推荐模型的统一框架。与传统方法不同,R?ec在单一自回归过程中实现了推理生成和物品预测的无缝整合。研究者还设计了RecPO优化框架,无需人工标注即可同时提升模型的推理和推荐能力。实验结果显示,R?ec在三个数据集上显著超越现有方法,在Hit@5和NDCG@20指标上分别提升68.67%和45.21%。这一突破为下一代智能推荐系统开辟了新方向。
这项研究提出了CURE框架,通过强化学习让大语言模型同时学习编写代码和生成单元测试两种能力,无需使用标准代码作为监督。团队开发的ReasonFlux-Coder模型在仅用4.5K编程问题训练后,便在多个基准测试中超越了同类模型,代码生成准确率提高5.3%,最佳N选1准确率提高9.0%。该方法不仅提升了模型性能,还提高了推理效率,同时为降低API调用成本和无标签强化学习提供了新思路。