HJB 方程的推导基于动态规划原理,其核心思想是将整个时间段的优化问题分解为无数个微小时间间隔内的优化问题。
下面以 Python 实现一个简单的 HJB 方程的数值求解,使用有限差分法求解上述示例中的HJB方程。
import numpy as np
import matplotlib.pyplot as plt
# 参数设置
T = 1.0 # 终止时间
Nx = 100 # 状态变量离散化数量
Nt = 1000 # 时间离散化数量
x_max = 2.0 # 状态变量范围 [-x_max, x_max]
dt = T / Nt
dx = 2 * x_max / Nx
x = np.linspace(-x_max, x_max, Nx+1)
t = np.linspace(T, 0, Nt+1) # 时间从T到0逆向
# 初始化价值函数 V(x, T) = 0.5 * x^2
V = 0.5 * x**2
# 使用向后时间步进
for n in range(Nt):
# 计算空间导数 dV/dx
dVdx = np.zeros_like(V)
dVdx[1:-1] = (V[2:] - V[:-2]) / (2 * dx)
# 边界条件 (Neumann边界条件 dV/dx=0)
dVdx[0] = (V[1] - V[0]) / dx
dVdx[-1] = (V[-1] - V[-2]) / dx
# 更新价值函数 V_t + 0.5*(V_x)^2 = 0
V_new = V - dt * 0.5 * (dVdx)**2
V = V_new.copy()
# 可视化结果
plt.figure(figsize=(8,6))
plt.plot(x, V, label='价值函数 $V(x, 0)$')
plt.xlabel('状态变量 $x$')
plt.ylabel('价值函数 $V$')
plt.title('HJB 方程数值解')
plt.legend()
plt.grid()
plt.show()
# 计算最优控制策略 u*
u_star = -dVdx
plt.figure(figsize=(8,6))
plt.plot(x, u_star, label='最优控制 $u^*$')
plt.xlabel('状态变量 $x$')
plt.ylabel('控制变量 $u^*$')
plt.title('最优控制策略')
plt.legend()
plt.grid()
plt.show()
HJB 方程是解决动态优化和最优控制问题的强大工具。通过动态规划原理,HJB 方程将复杂的优化问题转化为偏微分方程的求解问题。尽管在高维情况下数值求解 HJB 方程可能面临维度灾难,但在低维或具有特定结构的问题中,HJB 方程提供了清晰的解析或数值解法。
好文章,需要你的鼓励
随着大型语言模型迅猛演进,量子启发 AI 正在探索通过并行扩散模型和量子退火技术实现更高效率和低能耗,为未来 AI 架构提供革新思路。
CapitaLand Investment 利用Python和多种机器学习算法开发车场预测系统,动态优化停车位资源与用户体验,实现整体收入提升15%。
OpenAI 最新推出的 o3 和 o4-mini 推理 AI 模型虽然在编程和数学等任务上表现出色,但幻觉率却远高于以往模型,引发了对准确性的严重担忧,亟待进一步研究。