数据集放在 datasets/coco_minitrain_10k
数据集目录结构如下:
datasets/
└── coco_mintrain_10k/
├── annotations/
│ ├── instances_train2017.json
│ ├── instances_val2017.json
│ ├── ... (其他标注文件)
├── train2017/
│ ├── 000000000001.jpg
│ ├── ... (其他训练图像)
├── val2017/
│ ├── 000000000001.jpg
│ ├── ... (其他验证图像)
└── test2017/
├── 000000000001.jpg
├── ... (其他测试图像)
conda creaet -n yolo11_py310 python=3.10
conda activate yolo11_py310
pip install -U -r train/requirements.txt
先下载预训练权重:
bash 0_download_wgts.sh
执行预测测试:
bash 1_run_predict_yolo11.sh
预测结果保存在 runs
文件夹下,效果如下:
已经准备好一键训练肩膀,直接执行训练脚本:
bash 2_run_train_yolo11.sh
其中其作用的代码很简单,就在 train/train_yolo11.py
中,如下:
# Load a model
model = YOLO(curr_path + "/wgts/yolo11n.pt")
# Train the model
train_results = model.train(
data= curr_path + "/cfg/coco128.yaml", # path to dataset YAML
epochs=100, # number of training epochs
imgsz=640, # training image size
device="0", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)
# Evaluate model performance on the validation set
metrics = model.val()
主要就是配置一下训练参数,如数据集路径、训练轮数、显卡ID、图片大小等,然后执行训练即可
训练完成后,训练日志会在 runs/train
文件夹下,比如训练中 val 预测图片如下:
这样就完成了算法训练
使用 TensorRT 进行算法部署
直接执行一键导出ONNX脚本:
bash 3_run_export_onnx.sh
在脚本中已经对ONNX做了sim的简化
生成的ONNX以及_simONNX模型保存在wgts
文件夹下
直接去NVIDIA的官网下载(https://developer.nvidia.com/tensorrt/download)对应版本的tensorrt TAR包,解压基本步骤如下:
tar zxvf TensorRT-xxx-.tar.gz
# 软链trtexec
sudo ln -s /path/to/TensorRT/bin/trtexec /usr/local/bin
# 验证一下
trtexec --help
# 安装trt的python接口
cd python
pip install tensorrt-xxx.whl
直接执行一键生成trt模型引擎的脚本:
bash 4_build_trt_engine.sh
正常会在wgts
路径下生成yolo11n.engine,并有类似如下的日志:
[10/02/2024-21:28:48] [V] === Explanations of the performance metrics ===
[10/02/2024-21:28:48] [V] Total Host Walltime: the host walltime from when the first query (after warmups) is enqueued to when the last query is completed.
[10/02/2024-21:28:48] [V] GPU Compute Time: the GPU latency to execute the kernels for a query.
[10/02/2024-21:28:48] [V] Total GPU Compute Time: the summation of the GPU Compute Time of all the queries. If this is significantly shorter than Total Host Walltime, the GPU may be under-utilized because of host-side overheads or data transfers.
[10/02/2024-21:28:48] [V] Throughput: the observed throughput computed by dividing the number of queries by the Total Host Walltime. If this is significantly lower than the reciprocal of GPU Compute Time, the GPU may be under-utilized because of host-side overheads or data transfers.
[10/02/2024-21:28:48] [V] Enqueue Time: the host latency to enqueue a query. If this is longer than GPU Compute Time, the GPU may be under-utilized.
[10/02/2024-21:28:48] [V] H2D Latency: the latency for host-to-device data transfers for input tensors of a single query.
[10/02/2024-21:28:48] [V] D2H Latency: the latency for device-to-host data transfers for output tensors of a single query.
[10/02/2024-21:28:48] [V] Latency: the summation of H2D Latency, GPU Compute Time, and D2H Latency. This is the latency to infer a single query.
[10/02/2024-21:28:48] [I]
&&&& PASSED TensorRT.trtexec [TensorRT v100500] [b18] # trtexec --onnx=../wgts/yolo11n_sim.onnx --saveEngine=../wgts/yolo11n.engine --fp16 --verbose
直接执行一键推理脚本:
bash 5_infer_trt.sh
实际的trt推理脚本在 deploy/infer_trt.py
推理成功会有如下日志:
------ trt infer success! ------
推理结果保存在 deploy/output.jpg
如下:
好文章,需要你的鼓励
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。