数据集放在 datasets/coco_minitrain_10k数据集目录结构如下:
datasets/└── coco_mintrain_10k/├── annotations/│ ├── instances_train2017.json│ ├── instances_val2017.json│ ├── ... (其他标注文件)├── train2017/│ ├── 000000000001.jpg│ ├── ... (其他训练图像)├── val2017/│ ├── 000000000001.jpg│ ├── ... (其他验证图像)└── test2017/├── 000000000001.jpg├── ... (其他测试图像)
conda creaet -n yolo11_py310 python=3.10conda activate yolo11_py310pip install -U -r train/requirements.txt
先下载预训练权重:
bash 0_download_wgts.sh
执行预测测试:
bash 1_run_predict_yolo11.sh
预测结果保存在 runs 文件夹下,效果如下:

已经准备好一键训练肩膀,直接执行训练脚本:
bash 2_run_train_yolo11.sh
其中其作用的代码很简单,就在 train/train_yolo11.py 中,如下:
# Load a modelmodel = YOLO(curr_path + "/wgts/yolo11n.pt")# Train the modeltrain_results = model.train(data= curr_path + "/cfg/coco128.yaml", # path to dataset YAMLepochs=100, # number of training epochsimgsz=640, # training image sizedevice="0", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu)# Evaluate model performance on the validation setmetrics = model.val()
主要就是配置一下训练参数,如数据集路径、训练轮数、显卡ID、图片大小等,然后执行训练即可
训练完成后,训练日志会在 runs/train 文件夹下,比如训练中 val 预测图片如下:

这样就完成了算法训练
使用 TensorRT 进行算法部署
直接执行一键导出ONNX脚本:
bash 3_run_export_onnx.sh
在脚本中已经对ONNX做了sim的简化
生成的ONNX以及_simONNX模型保存在wgts文件夹下
直接去NVIDIA的官网下载(https://developer.nvidia.com/tensorrt/download)对应版本的tensorrt TAR包,解压基本步骤如下:
tar zxvf TensorRT-xxx-.tar.gz# 软链trtexecsudo ln -s /path/to/TensorRT/bin/trtexec /usr/local/bin# 验证一下trtexec --help# 安装trt的python接口cd pythonpip install tensorrt-xxx.whl
直接执行一键生成trt模型引擎的脚本:
bash 4_build_trt_engine.sh
正常会在wgts路径下生成yolo11n.engine,并有类似如下的日志:
[10/02/2024-21:28:48] [V] === Explanations of the performance metrics ===[10/02/2024-21:28:48] [V] Total Host Walltime: the host walltime from when the first query (after warmups) is enqueued to when the last query is completed.[10/02/2024-21:28:48] [V] GPU Compute Time: the GPU latency to execute the kernels for a query.[10/02/2024-21:28:48] [V] Total GPU Compute Time: the summation of the GPU Compute Time of all the queries. If this is significantly shorter than Total Host Walltime, the GPU may be under-utilized because of host-side overheads or data transfers.[10/02/2024-21:28:48] [V] Throughput: the observed throughput computed by dividing the number of queries by the Total Host Walltime. If this is significantly lower than the reciprocal of GPU Compute Time, the GPU may be under-utilized because of host-side overheads or data transfers.[10/02/2024-21:28:48] [V] Enqueue Time: the host latency to enqueue a query. If this is longer than GPU Compute Time, the GPU may be under-utilized.[10/02/2024-21:28:48] [V] H2D Latency: the latency for host-to-device data transfers for input tensors of a single query.[10/02/2024-21:28:48] [V] D2H Latency: the latency for device-to-host data transfers for output tensors of a single query.[10/02/2024-21:28:48] [V] Latency: the summation of H2D Latency, GPU Compute Time, and D2H Latency. This is the latency to infer a single query.[10/02/2024-21:28:48] [I]&&&& PASSED TensorRT.trtexec [TensorRT v100500] [b18] # trtexec --onnx=../wgts/yolo11n_sim.onnx --saveEngine=../wgts/yolo11n.engine --fp16 --verbose
直接执行一键推理脚本:
bash 5_infer_trt.sh
实际的trt推理脚本在 deploy/infer_trt.py推理成功会有如下日志:
------ trt infer success! ------
推理结果保存在 deploy/output.jpg
如下:

好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。