阿里巴巴最新开源了320亿参数的大语言模型Qwen1.5-32B,这个模型在各项评测结果中都略超此前最强开源大模型Mixtral 8×7B MoE,比720亿参数的Qwen-1.5-72B模型略差。但是一半的参数意味着只有一半的显存,这样的性价比极高。

Qwen1.5-32B简介
Qwen1.5-32B模型的评测结果
Qwen1.5-32B模型的上下文长度
Qwen1.5-32B模型的开源地址和演示地址
Qwen系列大语言模型是阿里巴巴开源的一系列大语言模型,在各项评测和应用中都取得了非常好的效果,也引起了非常多的人的关注。而且Qwen系列模型不仅仅是在国内很有名,在全球的大模型开源领域都有着很好的吸引力。本次开源的320亿参数模型是最新的一个。
Qwen1.5可以理解为Qwen2的beta版本,在此前开源了6个不同参数规模的Qwen1.5模型,最小的只有5亿参数,最大的是720亿参数。其中,Qwen1.5-72B是目前MT-Bench测评中仅次于GPT-4的模型,也是开源模型中得分最高的模型(MT-Bench采用了真实的多轮对话数据集)。而在匿名投票评测中(LMSYS推出的Areno评测系统,该评测为用户提供不同模型的匿名回复,由用户投票谁好谁好),Qwen1.5-72B也是开源模型中最强的。
不过720亿参数的Qwen1.5-72B的半精度模型需要144GB显存才能载入,单个显卡无法使用,因此很多人也无法体验。而此次发布的Qwen1.5-32B模型的参数只有Qwen1.5-72B模型参数的一半,显存也只有它的一半。官方提供的Int4版本模型仅需要20G显存,可以在4090显卡上推理,但实测速度较慢!。所以,消费级显卡在做这种规模参数模型的推理上还是比较差的。
而从评测结果看,Qwen1.5-32B比Qwen1.5-72B性能损失很小,而显存降低了一半,所以非常有性价比。
阿里巴巴官方说,最近几个月,通义千问模型在后训练上取得了进展,即在基于人类反馈的强化学习对齐训练方面有了很好的进步。而这个Qwen1.5-32B模型就是这个进步的成果。而Qwen1.5-32B模型本身和其它1.5版本的Qwen模型架构没有区别,不过多了一个 grouped query attention (GQA),因此,推理的效率应该更高。
官方发布的Qwen1.5-32B包含5个版本:

根据官方的描述,Qwen1.5-32B模型在300亿参数规模的模型中评测中非常靠前。虽然不能说第一,但各项成绩都很优秀。
而根据DataLearnerAI收集的全球主流模型评测结果上,Qwen1.5-32B接近此前发布的DBRX模型( https://www.datalearner.com/ai-models/pretrained-models/DBRX-Instruct ),这是一个1320亿参数的MoE模型(激活时使用360亿参数):

上图是按照MMLU评分从上往下排序的结果。从上图可以看到,Qwen1.5-32B超过了Grok-1,略低于DBRX模型。但是总体上比李开复旗下公司开源的Yi-34B也要略差。详细的数据如下:

尽管综合理解能力MMLU得分,Qwen1.5-32B并不算优秀,但是涉及到推理和数学方面(GSM8K、Math),则比其它300亿参数模型提升明显,只是略低于Qwen1.5-72B模型。
官方提到了它支持32K上下文长度输入,在“大海捞针”测试中表现很好。

Qwen1.5-32B模型本身以通义千问的开源协议开源,允许商用,也有在线测试,具体开源地址和在线测试地址参考DataLearnerAI的Qwen1.5-32B模型信息卡:https://www.datalearner.com/ai-models/pretrained-models/Qwen1_5-32B
好文章,需要你的鼓励
新加坡人工智能机构与阿里云发布全新大语言模型Qwen-Sea-Lion-v4,专门针对东南亚语言和文化特色进行优化。该模型结合阿里云Qwen3-32B基础模型和大量东南亚地区数据集,在东南亚语言模型评估榜单中位居开源模型首位。模型支持119种语言,能在32GB内存的消费级笔记本上运行,采用字节对编码技术更好处理非拉丁文字,并具备3.2万词元上下文长度,可执行文档级推理和摘要任务。
中科大联合快手等机构推出VR-Thinker技术,首次实现AI视频评判员的"边看边想"能力。该系统通过主动选择关键画面、智能记忆管理和三阶段训练,在视频质量评估准确率上达到75%-82%,特别擅长处理长视频场景,为AI视频生成的质量控制提供了突破性解决方案。
AI智能体是下一代业务自动化工具,不仅能对话交流,还能执行复杂任务。与ChatGPT聊天机器人不同,它们可在最少人工干预下规划并完成工作。文章介绍了五个高影响力应用:自动化客户服务解决方案、销售CRM管理、合规自动化、招聘筛选与排程、市场情报报告。这些应用都具有重复性工作流程、依赖结构化数据、遵循可预测规则等特点,能够释放员工宝贵时间用于更有价值的工作。
微软研究院发布BitDistill技术,通过三阶段优化将大型语言模型压缩至1.58位精度,在保持性能的同时实现10倍内存节省和2.65倍速度提升。该技术包括模型结构稳定化、持续预训练适应和知识蒸馏传承三个关键步骤,解决了模型量化中的性能衰减和规模化问题,为AI模型在资源受限设备上的高效部署提供了新方案。