阿里巴巴最新开源了320亿参数的大语言模型Qwen1.5-32B,这个模型在各项评测结果中都略超此前最强开源大模型Mixtral 8×7B MoE,比720亿参数的Qwen-1.5-72B模型略差。但是一半的参数意味着只有一半的显存,这样的性价比极高。

Qwen1.5-32B简介
Qwen1.5-32B模型的评测结果
Qwen1.5-32B模型的上下文长度
Qwen1.5-32B模型的开源地址和演示地址
Qwen系列大语言模型是阿里巴巴开源的一系列大语言模型,在各项评测和应用中都取得了非常好的效果,也引起了非常多的人的关注。而且Qwen系列模型不仅仅是在国内很有名,在全球的大模型开源领域都有着很好的吸引力。本次开源的320亿参数模型是最新的一个。
Qwen1.5可以理解为Qwen2的beta版本,在此前开源了6个不同参数规模的Qwen1.5模型,最小的只有5亿参数,最大的是720亿参数。其中,Qwen1.5-72B是目前MT-Bench测评中仅次于GPT-4的模型,也是开源模型中得分最高的模型(MT-Bench采用了真实的多轮对话数据集)。而在匿名投票评测中(LMSYS推出的Areno评测系统,该评测为用户提供不同模型的匿名回复,由用户投票谁好谁好),Qwen1.5-72B也是开源模型中最强的。
不过720亿参数的Qwen1.5-72B的半精度模型需要144GB显存才能载入,单个显卡无法使用,因此很多人也无法体验。而此次发布的Qwen1.5-32B模型的参数只有Qwen1.5-72B模型参数的一半,显存也只有它的一半。官方提供的Int4版本模型仅需要20G显存,可以在4090显卡上推理,但实测速度较慢!。所以,消费级显卡在做这种规模参数模型的推理上还是比较差的。
而从评测结果看,Qwen1.5-32B比Qwen1.5-72B性能损失很小,而显存降低了一半,所以非常有性价比。
阿里巴巴官方说,最近几个月,通义千问模型在后训练上取得了进展,即在基于人类反馈的强化学习对齐训练方面有了很好的进步。而这个Qwen1.5-32B模型就是这个进步的成果。而Qwen1.5-32B模型本身和其它1.5版本的Qwen模型架构没有区别,不过多了一个 grouped query attention (GQA),因此,推理的效率应该更高。
官方发布的Qwen1.5-32B包含5个版本:

根据官方的描述,Qwen1.5-32B模型在300亿参数规模的模型中评测中非常靠前。虽然不能说第一,但各项成绩都很优秀。
而根据DataLearnerAI收集的全球主流模型评测结果上,Qwen1.5-32B接近此前发布的DBRX模型( https://www.datalearner.com/ai-models/pretrained-models/DBRX-Instruct ),这是一个1320亿参数的MoE模型(激活时使用360亿参数):

上图是按照MMLU评分从上往下排序的结果。从上图可以看到,Qwen1.5-32B超过了Grok-1,略低于DBRX模型。但是总体上比李开复旗下公司开源的Yi-34B也要略差。详细的数据如下:

尽管综合理解能力MMLU得分,Qwen1.5-32B并不算优秀,但是涉及到推理和数学方面(GSM8K、Math),则比其它300亿参数模型提升明显,只是略低于Qwen1.5-72B模型。
官方提到了它支持32K上下文长度输入,在“大海捞针”测试中表现很好。

Qwen1.5-32B模型本身以通义千问的开源协议开源,允许商用,也有在线测试,具体开源地址和在线测试地址参考DataLearnerAI的Qwen1.5-32B模型信息卡:https://www.datalearner.com/ai-models/pretrained-models/Qwen1_5-32B
好文章,需要你的鼓励
周一AWS美东数据中心DNS故障导致数百万用户和上千家企业断网,Reddit、Snapchat、银行和游戏平台均受影响。专家认为这凸显了冗余备份的重要性,CIO需要根据业务关键性进行风险评估,优先保护核心系统。单一供应商策略仍可行,但需通过多区域部署分散风险,建立故障转移计划。金融、医疗等高风险行业需更高冗余级别。
上海AI实验室等机构联合提出FrameThinker框架,革命性地改变了AI处理长视频的方式。该系统采用"侦探式"多轮推理,先快速扫描全视频获得概览,再有针对性地深入分析关键片段。通过两阶段训练和认知一致性验证,FrameThinker在多个视频理解基准测试中准确率平均提升10.4%,计算效率提高20倍以上,为AI视频理解领域带来突破性进展。
英国政府发布新的反勒索软件指导文件,旨在解决供应链安全薄弱环节。该指南与新加坡当局联合制定,帮助组织识别供应链问题并采取实际措施检查供应商安全性。英国国家网络安全中心过去一年处理了204起"国家重大"网络安全事件。指南强调选择安全可靠的供应商、加强合同网络安全条款、进行独立审计等措施,以提升供应链韧性和防范网络攻击。
复旦大学团队创建MedQ-Bench基准,首次系统评估AI模型医学影像质量评估能力。研究覆盖五大成像模式,设计感知-推理双层评估体系,意外发现医学专用AI表现不如通用AI。结果显示最佳AI模型准确率仅68.97%,远低于人类专家82.50%,揭示了AI在医学影像质控应用中的现实挑战和改进方向。