阿里巴巴最新开源了320亿参数的大语言模型Qwen1.5-32B,这个模型在各项评测结果中都略超此前最强开源大模型Mixtral 8×7B MoE,比720亿参数的Qwen-1.5-72B模型略差。但是一半的参数意味着只有一半的显存,这样的性价比极高。

Qwen1.5-32B简介
Qwen1.5-32B模型的评测结果
Qwen1.5-32B模型的上下文长度
Qwen1.5-32B模型的开源地址和演示地址
Qwen系列大语言模型是阿里巴巴开源的一系列大语言模型,在各项评测和应用中都取得了非常好的效果,也引起了非常多的人的关注。而且Qwen系列模型不仅仅是在国内很有名,在全球的大模型开源领域都有着很好的吸引力。本次开源的320亿参数模型是最新的一个。
Qwen1.5可以理解为Qwen2的beta版本,在此前开源了6个不同参数规模的Qwen1.5模型,最小的只有5亿参数,最大的是720亿参数。其中,Qwen1.5-72B是目前MT-Bench测评中仅次于GPT-4的模型,也是开源模型中得分最高的模型(MT-Bench采用了真实的多轮对话数据集)。而在匿名投票评测中(LMSYS推出的Areno评测系统,该评测为用户提供不同模型的匿名回复,由用户投票谁好谁好),Qwen1.5-72B也是开源模型中最强的。
不过720亿参数的Qwen1.5-72B的半精度模型需要144GB显存才能载入,单个显卡无法使用,因此很多人也无法体验。而此次发布的Qwen1.5-32B模型的参数只有Qwen1.5-72B模型参数的一半,显存也只有它的一半。官方提供的Int4版本模型仅需要20G显存,可以在4090显卡上推理,但实测速度较慢!。所以,消费级显卡在做这种规模参数模型的推理上还是比较差的。
而从评测结果看,Qwen1.5-32B比Qwen1.5-72B性能损失很小,而显存降低了一半,所以非常有性价比。
阿里巴巴官方说,最近几个月,通义千问模型在后训练上取得了进展,即在基于人类反馈的强化学习对齐训练方面有了很好的进步。而这个Qwen1.5-32B模型就是这个进步的成果。而Qwen1.5-32B模型本身和其它1.5版本的Qwen模型架构没有区别,不过多了一个 grouped query attention (GQA),因此,推理的效率应该更高。
官方发布的Qwen1.5-32B包含5个版本:

根据官方的描述,Qwen1.5-32B模型在300亿参数规模的模型中评测中非常靠前。虽然不能说第一,但各项成绩都很优秀。
而根据DataLearnerAI收集的全球主流模型评测结果上,Qwen1.5-32B接近此前发布的DBRX模型( https://www.datalearner.com/ai-models/pretrained-models/DBRX-Instruct ),这是一个1320亿参数的MoE模型(激活时使用360亿参数):

上图是按照MMLU评分从上往下排序的结果。从上图可以看到,Qwen1.5-32B超过了Grok-1,略低于DBRX模型。但是总体上比李开复旗下公司开源的Yi-34B也要略差。详细的数据如下:

尽管综合理解能力MMLU得分,Qwen1.5-32B并不算优秀,但是涉及到推理和数学方面(GSM8K、Math),则比其它300亿参数模型提升明显,只是略低于Qwen1.5-72B模型。
官方提到了它支持32K上下文长度输入,在“大海捞针”测试中表现很好。

Qwen1.5-32B模型本身以通义千问的开源协议开源,允许商用,也有在线测试,具体开源地址和在线测试地址参考DataLearnerAI的Qwen1.5-32B模型信息卡:https://www.datalearner.com/ai-models/pretrained-models/Qwen1_5-32B
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。