阿里巴巴最新开源了320亿参数的大语言模型Qwen1.5-32B,这个模型在各项评测结果中都略超此前最强开源大模型Mixtral 8×7B MoE,比720亿参数的Qwen-1.5-72B模型略差。但是一半的参数意味着只有一半的显存,这样的性价比极高。
Qwen1.5-32B简介
Qwen1.5-32B模型的评测结果
Qwen1.5-32B模型的上下文长度
Qwen1.5-32B模型的开源地址和演示地址
Qwen系列大语言模型是阿里巴巴开源的一系列大语言模型,在各项评测和应用中都取得了非常好的效果,也引起了非常多的人的关注。而且Qwen系列模型不仅仅是在国内很有名,在全球的大模型开源领域都有着很好的吸引力。本次开源的320亿参数模型是最新的一个。
Qwen1.5可以理解为Qwen2的beta版本,在此前开源了6个不同参数规模的Qwen1.5模型,最小的只有5亿参数,最大的是720亿参数。其中,Qwen1.5-72B是目前MT-Bench测评中仅次于GPT-4的模型,也是开源模型中得分最高的模型(MT-Bench采用了真实的多轮对话数据集)。而在匿名投票评测中(LMSYS推出的Areno评测系统,该评测为用户提供不同模型的匿名回复,由用户投票谁好谁好),Qwen1.5-72B也是开源模型中最强的。
不过720亿参数的Qwen1.5-72B的半精度模型需要144GB显存才能载入,单个显卡无法使用,因此很多人也无法体验。而此次发布的Qwen1.5-32B模型的参数只有Qwen1.5-72B模型参数的一半,显存也只有它的一半。官方提供的Int4版本模型仅需要20G显存,可以在4090显卡上推理,但实测速度较慢!。所以,消费级显卡在做这种规模参数模型的推理上还是比较差的。
而从评测结果看,Qwen1.5-32B比Qwen1.5-72B性能损失很小,而显存降低了一半,所以非常有性价比。
阿里巴巴官方说,最近几个月,通义千问模型在后训练上取得了进展,即在基于人类反馈的强化学习对齐训练方面有了很好的进步。而这个Qwen1.5-32B模型就是这个进步的成果。而Qwen1.5-32B模型本身和其它1.5版本的Qwen模型架构没有区别,不过多了一个 grouped query attention (GQA),因此,推理的效率应该更高。
官方发布的Qwen1.5-32B包含5个版本:
根据官方的描述,Qwen1.5-32B模型在300亿参数规模的模型中评测中非常靠前。虽然不能说第一,但各项成绩都很优秀。
而根据DataLearnerAI收集的全球主流模型评测结果上,Qwen1.5-32B接近此前发布的DBRX模型( https://www.datalearner.com/ai-models/pretrained-models/DBRX-Instruct ),这是一个1320亿参数的MoE模型(激活时使用360亿参数):
上图是按照MMLU评分从上往下排序的结果。从上图可以看到,Qwen1.5-32B超过了Grok-1,略低于DBRX模型。但是总体上比李开复旗下公司开源的Yi-34B也要略差。详细的数据如下:
尽管综合理解能力MMLU得分,Qwen1.5-32B并不算优秀,但是涉及到推理和数学方面(GSM8K、Math),则比其它300亿参数模型提升明显,只是略低于Qwen1.5-72B模型。
官方提到了它支持32K上下文长度输入,在“大海捞针”测试中表现很好。
Qwen1.5-32B模型本身以通义千问的开源协议开源,允许商用,也有在线测试,具体开源地址和在线测试地址参考DataLearnerAI的Qwen1.5-32B模型信息卡:https://www.datalearner.com/ai-models/pretrained-models/Qwen1_5-32B
好文章,需要你的鼓励
UniR(Universal Reasoner)是一种创新的推理增强方法,可为冻结的大语言模型提供即插即用的推理能力。由韩国科学技术院研究团队开发,该方法将推理能力分解为独立的轻量级模块,无需改变主模型结构。UniR的核心优势在于高效训练(仅更新小型推理模块)、出色的模型间迁移能力(小模型可指导大模型)以及模块组合能力(多个专用模块可通过logits相加组合使用)。在数学推理和翻译测试中,UniR显著超越现有微调方法,展示了轻量级模块如何有效增强大语言模型的推理能力。
Nebius团队开发了SWE-rebench,一个自动化管道用于从GitHub收集软件工程任务并进行去污染评估。该系统解决了两大挑战:高质量训练数据稀缺和评估基准容易被污染。通过四阶段处理(初步收集、自动安装配置、执行验证和质量评估),SWE-rebench构建了包含超过21,000个Python交互式任务的数据集,并提供持续更新的评估基准。研究发现部分语言模型在传统基准上的表现可能被污染效应夸大,而DeepSeek模型在开源模型中表现最为稳健。
这项研究提出了JQL(发音为"Jackal"),一种通过多语言方法提升大型语言模型预训练数据质量的创新系统。研究团队从拉马尔研究所等机构通过四阶段方法解决了多语言数据筛选的难题:先由人类评估内容教育价值创建基准数据,然后评估大型语言模型作为"评判者"的能力,接着将这些能力提炼到轻量级评估器中,最后应用于大规模数据筛选。实验表明,JQL在35种语言上显著优于现有方法,甚至能泛化到未见过的语言如阿拉伯语和中文,为多语言AI发展提供了高效可靠的数据筛选方案。
浙江大学和西湖大学研究团队开发的Styl3R实现了艺术风格化3D重建的重大突破,能在不到一秒内从少量未标定照片和任意风格图像创建具有多视角一致性的3D艺术场景。通过创新的双分支网络架构将结构建模与外观着色分离,系统不仅保持了原始场景结构,还准确捕捉了参考风格特征。与现有方法相比,Styl3R在处理速度和视觉质量上均显著领先,为创意内容制作开辟了全新可能。