本文原文来自DataLearnerAI官方网站:
https://www.datalearner.com/blog/1051721328234545
在人工智能领域,Mistral与NVIDIA的合作带来了一个引人注目的新型大模型——Mistral NeMo。这个拥有120亿参数的模型不仅性能卓越,还为AI的普及和应用创新铺平了道路。MistralAI官方博客介绍说该模型是此前开源的Mistral 7B模型的继承者,因此未来可能7B不会再继续演进了!
Mistral NeMo另一个最大的特点是大幅提高了多语言能力,特别是中文的支持大幅提高。虽然此前Mistral AI开源了很多模型,但是中文表现都很一般。而Mistral NeMo则在中文水平大幅提升。
Mistral NeMo简介
Mistral NeMo的评测结果
Mistral NeMo多语言支持包含中文!
Mistral NeMo技术简介
Mistral NeMo兼容此前的Mistral 7B模型
Mistral NeMo是完全开源的模型
Mistral NeMo最令人瞩目的特点之一是其超长的上下文窗口,能够处理高达128k tokens的输入文本,这使得模型在理解复杂场景和长文本处理上具有显著优势,为多轮对话提供了更广阔的应用空间。
在同等规模的模型中,Mistral NeMo在推理能力、世界知识的掌握以及编程准确性方面都达到了顶尖水平,这使其在解决复杂问题和生成高质量代码等多种应用场景中表现出色。
下图是Mistral NeMo与其它模型评测结果的对比:
从上面可以看到,尽管综合理解能力(MMLU)上Mistral NeMo模型表现一般,但是在数学推理任务上表现很亮眼!
根据DataLearnerAI收集的大模型评测结果,新开源的Mistral NeMo模型在130亿参数规模的模型上评测非常优秀,MMLU评测得分第一。
鉴于此前MistralAI开源的模型的良好口碑,这样的成绩下Mistral NeMo的能力非常值得期待。
此前MistralAI开源的Mixtral MoE以及Mixtral 7B都是不支持中文,或者中文非常弱。此次官方宣称对中文的支持说明这方面能力已经达到一定水平了。下图是Mistral NeMo在多语言上的评测结果,显著超过了Llama3-8B。
尽管没有很详细的描述,但是官方还是透露了一些技术细节,Mistral NeMo采用了基于Tiktoken开发的新分词器Tekken,在多种自然语言和源代码的处理上表现卓越,其文本压缩效率比传统分词器高出约30%,显著提升了模型的效率和性能。
Mistral NeMo在遵循精确指令、推理、处理多轮对话和生成代码等方面都表现出显著进步,不仅能理解用户需求,还能更准确地完成各种复杂任务。
为了降低企业和开发者的门槛,Mistral采用了标准架构,可以轻松替代任何使用Mistral 7B的系统。模型权重已在HuggingFace上公开,并配有推理和微调工具,而NVIDIA则将其作为NIM推理微服务容器提供,进一步简化了部署和使用过程。
Mistral选择开源友好策略,通过Apache 2.0许可证发布模型的预训练和指令微调检查点,极大推动了学术界和产业界对该模型的采用与创新。
Mistral NeMo模型的开源地址参考DataLearnerAI的模型信息卡:https://www.datalearner.com/ai-models/pretrained-models/Mistral-NeMo-Base-12B
好文章,需要你的鼓励
随着人工智能的崛起,我们的职业和个人生活正在发生变革。AI正逐渐渗透到我们的屏幕和思维中。在2025年复杂的政治格局下,我们似乎正生活在一个科幻场景中。这引发了一个不适的问题:我们还能保持多久的主导地位,而不是沦为按剧本行事的演员?AI的持续整合带来了一个微妙却重要的风险:能动性衰退。
据报道,苹果正在开发一项名为 Project Mulberry 的新项目,旨在通过 AI 技术"复制"用户的真实医生。该项目将以健康教练的形式出现在升级版的健康应用中,预计在 iOS 19.4 中首次亮相。这个 AI 健康教练将利用苹果已有的用户健康数据,提供个性化的健康建议。这是蒂姆·库克长期愿景的一部分,即让苹果在医疗保健领域做出最大的社会贡献。
Experian信用局采用了一种审慎的AI应用方法,开发了内部流程、框架和治理模型,帮助其测试和大规模部署生成式AI。这种方法融合了先进的机器学习、代理式AI架构和基层创新,改善了业务运营,并为约2600万美国人扩大了金融服务的可及性。Experian的AI之旅展示了传统数据公司如何转型为AI驱动的平台企业,为负责任的AI治理提供了蓝图。