大模型场景下智算平台的设计与优化实践
智算平台面临着前所未有的挑战和机遇。通过技术创新和持续优化,可以有效提升智算平台在大模型场景下的性能和稳定性,推动AI技术的快速发展。

-
小模型与大模型的区别主要体现在训练时长、成本和工程问题上。
-
大模型时代的智算平台需要解决基础设施、调度、应用和运维等方面的问题。
-
新的要求包括适配多种异构芯片、优化存储读写性能、高性能网络搭建等。
-
基础设施层面的问题包括适配多种异构芯片、固件和驱动兼容性等。
-
-
-
-
在基础设施层,讨论了国产卡与NV卡的兼容性、混合多芯的使用、高性能存储方案等。
-
调度层的技术实践包括提高单卡资源利用率、GPU虚拟化、资源管理和调度逻辑等。
-
应用层的技术实践涉及AIAK训推加速、训练容错、Flash Checkpoint等。
-
运维方面的实践包括故障处理、容量管理、任务性能调优等。
-
智算平台的发展应致力于简化下层复杂性,使GPU的使用更加便捷。
-
-
发展趋势显示预训练难度增加,领域微调多样化,模型推理可能迎来新的增长。
随着大模型时代的到来,智算平台面临着前所未有的挑战和机遇。百度的实践经验表明,通过技术创新和持续优化,可以有效提升智算平台在大模型场景下的性能和稳定性,推动AI技术的快速发展。



























0赞好文章,需要你的鼓励
推荐文章
卢森堡大学研究团队开发的RLDP框架首次将强化学习应用于差分隐私优化,创造性地解决了AI训练中隐私保护与模型效果的矛盾。该方法如同智能教练,能动态调整隐私保护策略,在四种语言模型上实现平均5.6%的性能提升和71%的训练时间缩短,同时增强了抗隐私攻击能力,为敏感数据的AI应用开辟了新路径。
这项由北京大学人工智能研究院完成的研究,首次从数据压缩理论角度揭示了大型语言模型存在"弹性"现象——即使经过精心安全对齐,模型仍倾向于保持预训练时的行为分布。
腾讯混元团队联合北京大学提出MixGRPO技术,通过混合ODE-SDE采样策略和滑动窗口机制,将AI图像生成训练效率提升50%-71%,同时在多项人类偏好评估指标上超越现有方法。该技术采用"从难到易"的渐进优化策略,专注于图像生成早期阶段的重点优化,并引入高阶求解器进一步加速训练过程,为AI图像生成的产业化应用提供了更高效可行的解决方案。