OpenAI的o1模型,作为首个采用强化学习策略内化思维链(chain-of-thought)技术的LLM,已经在各种通用语言任务上展现出超凡的能力。
然而,它在医学等专业领域的性能仍然是一个未知数。为了探索这一问题,研究人员进行了一项初步研究,以评估o1在不同医学场景下的表现。
研究聚焦于o1模型在医学领域的三个关键方面:理解力、推理能力和多语言能力。为了确保评估的全面性,研究者们收集了35个现有的医学数据集,并开发了2个基于《新英格兰医学杂志》和《柳叶刀》的专业医学测验的新问答数据集,这些数据集被用于6个不同的任务中。
在理解力方面,评估包括概念识别和文本摘要任务。推理能力的测试更为复杂,它包括知识问答、临床决策支持和代理任务。多语言能力的评估则检查模型处理非英语医学问题的能力。这包括使用多种语言的问答任务,以及在中文医疗代理任务中模拟医疗互动。
为了衡量模型在这些任务上的表现,研究者们采用了多种评估指标。准确率直接衡量模型生成的答案与真实答案匹配的程度。F1分数则用于评估模型在需要选择多个正确答案的任务上的性能。BLEU和ROUGE指标用于评估生成文本与参考文本之间的相似度。AlignScore和Mauve指标则用于评估模型生成文本的事实一致性和自然度。
在实施评估时,研究者们探索了三种提示策略:直接提示、思维链提示和少量示例提示。他们选择了几种不同的模型进行比较,包括GPT-3.5、GPT-4以及开源模型MEDITRON-70B和Llama3-8B。实验涉及到多个医学任务,如问答、文本摘要、概念识别等,并使用了相应的数据集来评估模型在每个任务上的表现。
实验结果显示,o1模型在多数医学任务上都展现出了优越的性能。
在理解医学概念方面,o1在多个概念识别数据集上的表现超过了其他模型,在BC4Chem数据集上,o1的平均性能提升达到了24.5%。
在推理能力方面,o1在新构建的NEJMQA和LancetQA问答任务上取得了显著的准确率提升,o1的平均准确率分别比GPT-4高出8.9%和27.1%。
此外,o1在多语言医学问答任务中也展现了强大的能力,但在复杂的中文医疗代理任务中,其性能却有所下降。
研究人员也发现了一些局限性。o1在多个医学任务上表现出色,但其较长的解码时间可能导致在需要快速响应的临床环境中的实用性受限。此外,模型在处理复杂的中文医疗代理任务时性能有所下降,在处理复杂的多语言医学案例时仍面临挑战。
研究人员还发现,传统的评估指标如BLEU和ROUGE,无法充分捕捉到模型在医学领域的表现,需要开发更加精确的评估工具,以便更好地衡量和理解模型在复杂医学任务中的表现。
研究人员认为,尽管o1在某些方面仍有不足,但其在多个医学任务上展现出的能力表明,我们离实现AI医生的目标已经越来越近。然而,为了实现这一目标,还需要在模型性能、评估指标和用户指导策略等方面进行更多的研究和改进。
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。