GPTQ (Gradient-based Post-training Quantization) 是一种针对大规模预训练模型的高效后量化算法 (Post-Training Quantization, PTQ)。其主要目标是在不重新训练模型的情况下,将大模型模型权重量化到低比特(如4-bit或更低),同时尽可能保持模型的性能。
GPTQ 的核心思想是通过最小化量化引入的输出误差,实现高精度低比特量化。具体来说,GPTQ 在后量化过程中,针对每一层的权重矩阵,利用一小部分校准数据,最小化量化前后模型输出的差异。其量化算法的基本步骤如下:
为了降低计算复杂度,GPTQ 采用了逐列优化的方法。将权重矩阵 W 的列表示为 wi,对每一列进行量化,同时考虑之前列量化引入的误差累积。逐列量化的具体步骤如下:
在量化过程中,GPTQ 可以采用多种量化策略,如对称量化、非对称量化、均匀量化等。同时,量化器需要满足硬件的限制,确保量化后的值在表示范围内。
逐列优化的主要优势在于:
BNB 主要实现了8-bit和4-bit的量化,支持在GPU上高效运行,BNB 采用了定点量化的方法,将浮点数映射到低比特的整数表示。其不足点主要体现在下面两点:
AWQ 量化考虑了激活值对权重量化的影响,通过联合优化权重和激活函数,实现更精细的量化。但其复杂度高:联合优化权重和激活函数,增加了实现和调试的复杂度。
下面展示使用 GPTQ 对模型进行量化的示例代码。
pip install transformers
pip install accelerate
pip install auto-gptq
import torch
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
# 指定模型名称
model_name_or_path = "gpt2"
# 定义量化配置
quantize_config = BaseQuantizeConfig(
bits=4, # 量化到4-bit
group_size=128, # 分组大小,通常为128或None
desc_act=False, # 是否禁用激活函数的量化
)
# 加载模型并进行量化
model = AutoGPTQForCausalLM.from_pretrained(
model_name_or_path,
quantize_config=quantize_config,
use_triton=False # 如果安装了triton加速器,可设为True
)
# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
# 保存量化后的模型
save_directory = "gpt2-quantized"
model.save_quantized(save_directory)
tokenizer.save_pretrained(save_directory)
# 加载量化后的模型
model_quantized = AutoGPTQForCausalLM.from_quantized(
save_directory,
use_safetensors=True,
device="cuda:0" if torch.cuda.is_available() else "cpu",
use_triton=False,
)
# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(save_directory, use_fast=True)
# 准备输入
input_text = "今天天气如何?"
inputs = tokenizer(input_text, return_tensors="pt")
# 将输入移动到模型设备
inputs =
# 生成输出
with torch.no_grad():
output_ids = model_quantized.generate(
**inputs,
max_new_tokens=50,
do_sample=True,
temperature=0.7,
)
# 解码输出
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output_text)
其中:
bits
、group_size
等参数;需要注意的是,某些大型模型(如Llama系列)使用了自定义的模型结构,需要在加载时设置 trust_remote_code=True
。
好了,以上分享了 解读大模型量化算法之 GPTQ,希望我的分享能对你的学习有一点帮助。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。
主动型 AI 是人工智能的下一次进化,它不仅能生成内容,还能自主决策和追求目标。这种 AI 可以设定自己的目标,制定策略并根据情况调整方法,实现真正的自主性。它将彻底改变机器与世界的互动方式,为人机协作开启新的可能性,但也带来了透明度和伦理等挑战。