GPTQ (Gradient-based Post-training Quantization) 是一种针对大规模预训练模型的高效后量化算法 (Post-Training Quantization, PTQ)。其主要目标是在不重新训练模型的情况下,将大模型模型权重量化到低比特(如4-bit或更低),同时尽可能保持模型的性能。

GPTQ 的核心思想是通过最小化量化引入的输出误差,实现高精度低比特量化。具体来说,GPTQ 在后量化过程中,针对每一层的权重矩阵,利用一小部分校准数据,最小化量化前后模型输出的差异。其量化算法的基本步骤如下:

为了降低计算复杂度,GPTQ 采用了逐列优化的方法。将权重矩阵 W 的列表示为 wi,对每一列进行量化,同时考虑之前列量化引入的误差累积。逐列量化的具体步骤如下:

在量化过程中,GPTQ 可以采用多种量化策略,如对称量化、非对称量化、均匀量化等。同时,量化器需要满足硬件的限制,确保量化后的值在表示范围内。



逐列优化的主要优势在于:
BNB 主要实现了8-bit和4-bit的量化,支持在GPU上高效运行,BNB 采用了定点量化的方法,将浮点数映射到低比特的整数表示。其不足点主要体现在下面两点:
AWQ 量化考虑了激活值对权重量化的影响,通过联合优化权重和激活函数,实现更精细的量化。但其复杂度高:联合优化权重和激活函数,增加了实现和调试的复杂度。
下面展示使用 GPTQ 对模型进行量化的示例代码。
pip install transformerspip install acceleratepip install auto-gptq
import torchfrom transformers import AutoTokenizerfrom auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig# 指定模型名称model_name_or_path = "gpt2"# 定义量化配置quantize_config = BaseQuantizeConfig(bits=4, # 量化到4-bitgroup_size=128, # 分组大小,通常为128或Nonedesc_act=False, # 是否禁用激活函数的量化)# 加载模型并进行量化model = AutoGPTQForCausalLM.from_pretrained(model_name_or_path,quantize_config=quantize_config,use_triton=False # 如果安装了triton加速器,可设为True)# 加载分词器tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)# 保存量化后的模型save_directory = "gpt2-quantized"model.save_quantized(save_directory)tokenizer.save_pretrained(save_directory)
# 加载量化后的模型model_quantized = AutoGPTQForCausalLM.from_quantized(save_directory,use_safetensors=True,device="cuda:0" if torch.cuda.is_available() else "cpu",use_triton=False,)# 加载分词器tokenizer = AutoTokenizer.from_pretrained(save_directory, use_fast=True)# 准备输入input_text = "今天天气如何?"inputs = tokenizer(input_text, return_tensors="pt")# 将输入移动到模型设备inputs =# 生成输出with torch.no_grad():output_ids = model_quantized.generate(**inputs,max_new_tokens=50,do_sample=True,temperature=0.7,)# 解码输出output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)print(output_text)
其中:
bits、group_size 等参数;需要注意的是,某些大型模型(如Llama系列)使用了自定义的模型结构,需要在加载时设置 trust_remote_code=True。
好了,以上分享了 解读大模型量化算法之 GPTQ,希望我的分享能对你的学习有一点帮助。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。