这里这张图非常的清晰,借鉴至这篇文章(https://medium.com/squeezebits-team-blog/vllm-vs-tensorrt-llm-1-an-overall-evaluation-88f281bf01c7),主要就是涉及 TTFT、TPOT、Total Inference Time (Latency) 以及图中没有提及的 TPS,这几个大模型的性能指标不只是适用于纯语言大模型 LLM,也适用于多模态大模型 MLLM,所以还是比较通用。
定义:从向模型输入 prompt 开始到模型生成第一个输出 token 所花费的时间。
作用:从业务角度来说是反映模型的初始响应速度,对于实时交互式应用非常重要,较低的TTFT可以提高用户体验,使用户感觉模型响应迅速;从算法推理角度来说,其实主要是在掐大模型推理的 Prefill 时间,更加准确一些的是上图中的 Queueing Time + Prefill Latency 时间和。
定义:从输入 prompt 到模型生成完整输出所消耗的总时间。
作用:总体的响应时间,包含 TTFT 和生成所有 tokens 的时间,当然对于需要快速响应的应用,延时越低越好。
定义:模型在输出阶段 (Decode 阶段) 每个输出 token 的延时。
计算方式:
作用:衡量模型生成阶段自回归蹦出来输出的效率。
定义:模型每秒生成的tokens数量。
计算方式:
作用:直接衡量模型的生成速度 (还是指 decode 阶段)。TPS 越高,表示模型生成文本的速度越快。
下面实操在 transformers 中测量 TTFT、TPOT、Latency 和 TPS 数据的代码。
def measure_performance(model, tokenizer, prompt, max_new_tokens=50):
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(model.device)
# 测量TTFT
start_time = time.time()
with torch.no_grad():
outputs = model.generate(input_ids, max_new_tokens=1)
ttft = time.time() - start_time
# 测量TPOT和Latency
start_time = time.time()
with torch.no_grad():
outputs = model.generate(input_ids, max_new_tokens=max_new_tokens)
total_time = time.time() - start_time
tpot = (total_time - ttft) / max_new_tokens
latency = total_time
# 计算TPS
tps = max_new_tokens / latency
return ttft, tpot, latency, tps
prompt = "Once upon a time"
ttft, tpot, latency, tps = measure_performance(model, tokenizer, prompt)
print(f"TTFT: seconds")
print(f"TPOT: seconds")
print(f"Latency: seconds")
print(f"TPS: tokens/second")
如果你稍微心细一些可能会发现上述的代码是在掐 max_new_tokens
的时间,而实际的输出 token 数一定会是 <= max_new_tokens
,这应该很好理解。所以更加准确一些的测试方法是掐实际输出 tokens,实际输出 tokens 可以使用类似 len(tokenizer.encode(response))
的代码进行计算。
所以可以看到大模型这种生成的模式测性能,指标和以前的 CV 小模型测性能差别非常之大。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。