这里这张图非常的清晰,借鉴至这篇文章(https://medium.com/squeezebits-team-blog/vllm-vs-tensorrt-llm-1-an-overall-evaluation-88f281bf01c7),主要就是涉及 TTFT、TPOT、Total Inference Time (Latency) 以及图中没有提及的 TPS,这几个大模型的性能指标不只是适用于纯语言大模型 LLM,也适用于多模态大模型 MLLM,所以还是比较通用。
定义:从向模型输入 prompt 开始到模型生成第一个输出 token 所花费的时间。
作用:从业务角度来说是反映模型的初始响应速度,对于实时交互式应用非常重要,较低的TTFT可以提高用户体验,使用户感觉模型响应迅速;从算法推理角度来说,其实主要是在掐大模型推理的 Prefill 时间,更加准确一些的是上图中的 Queueing Time + Prefill Latency 时间和。
定义:从输入 prompt 到模型生成完整输出所消耗的总时间。
作用:总体的响应时间,包含 TTFT 和生成所有 tokens 的时间,当然对于需要快速响应的应用,延时越低越好。
定义:模型在输出阶段 (Decode 阶段) 每个输出 token 的延时。
计算方式:
作用:衡量模型生成阶段自回归蹦出来输出的效率。
定义:模型每秒生成的tokens数量。
计算方式:
作用:直接衡量模型的生成速度 (还是指 decode 阶段)。TPS 越高,表示模型生成文本的速度越快。
下面实操在 transformers 中测量 TTFT、TPOT、Latency 和 TPS 数据的代码。
def measure_performance(model, tokenizer, prompt, max_new_tokens=50):
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(model.device)
# 测量TTFT
start_time = time.time()
with torch.no_grad():
outputs = model.generate(input_ids, max_new_tokens=1)
ttft = time.time() - start_time
# 测量TPOT和Latency
start_time = time.time()
with torch.no_grad():
outputs = model.generate(input_ids, max_new_tokens=max_new_tokens)
total_time = time.time() - start_time
tpot = (total_time - ttft) / max_new_tokens
latency = total_time
# 计算TPS
tps = max_new_tokens / latency
return ttft, tpot, latency, tps
prompt = "Once upon a time"
ttft, tpot, latency, tps = measure_performance(model, tokenizer, prompt)
print(f"TTFT: seconds")
print(f"TPOT: seconds")
print(f"Latency: seconds")
print(f"TPS: tokens/second")
如果你稍微心细一些可能会发现上述的代码是在掐 max_new_tokens
的时间,而实际的输出 token 数一定会是 <= max_new_tokens
,这应该很好理解。所以更加准确一些的测试方法是掐实际输出 tokens,实际输出 tokens 可以使用类似 len(tokenizer.encode(response))
的代码进行计算。
所以可以看到大模型这种生成的模式测性能,指标和以前的 CV 小模型测性能差别非常之大。
好文章,需要你的鼓励
东北大学与快手科技联合研发的UNITE系统为多模态信息检索带来突破性进展。这项发表于2025年5月的研究首次系统分析了模态特定数据如何影响检索性能,并提出创新的模态感知掩码对比学习技术,有效解决不同模态间的竞争关系。UNITE能同时处理文本、图像、视频及其组合,在40多项测试中超越现有方法,即使与参数规模更大的模型相比也表现出色。研究发现视频-文本对在通用检索中表现优异,而文本-文本和文本-图像对对指令遵循任务至关重要,为未来多模态系统研究提供了宝贵指南。
这篇研究论文揭示了多模态大语言模型(MLLMs)存在严重的模态偏差问题,即模型过度依赖文本信息而忽视图像等其他模态。研究团队通过理论分析和实验证明,这种偏差主要源于三个因素:数据集不平衡、模态骨干能力不对称以及训练目标设计不当。他们提出了系统的研究路线图和解决方案,包括增强视觉模态在数据集中的贡献、改变模型关注点和应用偏好优化策略。未来研究方向则包括开发更客观的评估指标、探索更多模态组合中的偏差问题以及应用可解释AI技术深入分析偏差机制。
ComfyMind是香港科技大学研究团队开发的一个协作式AI系统,旨在解决当前开源通用生成系统面临的稳定性和规划挑战。该系统基于ComfyUI平台,引入了两项关键创新:语义工作流接口(SWI)和带本地反馈执行的搜索树规划机制。SWI将低级节点图抽象为语义函数,而搜索树规划将生成过程视为分层决策任务。实验表明,ComfyMind在ComfyBench、GenEval和Reason-Edit三个基准测试中均大幅超越开源基线,并达到与GPT-Image-1相当的性能,为开源通用生成AI开辟了新路径。
这项研究介绍了一种名为"热带注意力"的新型注意力机制,专为解决神经网络在组合算法推理中的困境而设计。传统注意力机制使用softmax函数产生平滑的概率分布,无法精确捕捉组合算法所需的锐利决策边界。