AI芯片的基础关键参数”,算力是衡量计算机处理信息能力的重要指标,其中AI算力专注于AI应用,常见单位为TOPS和TFLOPS,通过GPU、ASIC、FPGA等专用芯片提供算法模型训练和推理。算力精度作为衡量算力水平的一种方式,其中FP16、FP32应用于模型训练,FP16、INT8应用于模型推理。
AI芯片通常采用GPU和ASIC架构。GPU因其在运算和并行任务处理上的优势成为AI计算中的关键组件,它的算力和显存、带宽决定了GPU的运算能力。GPU的核心可分为CudaCore、Tensor Core等;Tensor Core是增强AI计算的核心,相较于并行计算表现卓越的Cuda Core,它更专注于深度学习领域,通过优化矩阵运算来加速AI深度学习的训练和推理任务,其中Nvidia Volta Tensor Core架构较Pascal架构(Cuda Core) 的AI吞吐量增加了12倍。此外,TPU作为ASIC的一种专为机器学习设计的AI芯片,相比于CPU、GPU,其在机器学习任务中的高能效脱颖而出,其中TPU v1在神经网络性能上最大可达同时期CPU的71倍、GPU的2.7倍。
好文章,需要你的鼓励
年初时,整个存储行业依然处于低迷期,但随着AI需求的迅猛上升,存储需求也随之激增,推动了行业的快速复苏与发展。这一波技术创新与市场需求的双重浪潮,给Solidigm带来了前所未有的机遇,也考验着其应对行业变革的能力。
艾斯本不断推陈出新,依托丰富的行业经验,推出了包括绩效工程、制造与供应链、资产绩效管理、地下科学与工程、数字电网管理和工业数据结构在内的六大解决方案。更值得一提的是艾斯本提出的“工业AI”理念,正以有型的投资回报率,推动客户实现价值跃升。
智谱AI率先推出了 AutoGLM,试图打造一款能够理解、规划、执行,并最终实现“无人驾驶”操作系统的 AI Agent。
该处理器采用16nm工艺技术设计,拥有 48 个ARM Cortex-A75内核,六通道DDR4 3200 MHz 内存 - 每插槽高达 768 GB(每通道 128 GB)