AI芯片的基础关键参数”,算力是衡量计算机处理信息能力的重要指标,其中AI算力专注于AI应用,常见单位为TOPS和TFLOPS,通过GPU、ASIC、FPGA等专用芯片提供算法模型训练和推理。算力精度作为衡量算力水平的一种方式,其中FP16、FP32应用于模型训练,FP16、INT8应用于模型推理。
AI芯片通常采用GPU和ASIC架构。GPU因其在运算和并行任务处理上的优势成为AI计算中的关键组件,它的算力和显存、带宽决定了GPU的运算能力。GPU的核心可分为CudaCore、Tensor Core等;Tensor Core是增强AI计算的核心,相较于并行计算表现卓越的Cuda Core,它更专注于深度学习领域,通过优化矩阵运算来加速AI深度学习的训练和推理任务,其中Nvidia Volta Tensor Core架构较Pascal架构(Cuda Core) 的AI吞吐量增加了12倍。此外,TPU作为ASIC的一种专为机器学习设计的AI芯片,相比于CPU、GPU,其在机器学习任务中的高能效脱颖而出,其中TPU v1在神经网络性能上最大可达同时期CPU的71倍、GPU的2.7倍。
好文章,需要你的鼓励
这项研究介绍了Ankh3,一种创新的蛋白质语言模型,通过多任务预训练策略显著提升了模型性能。研究者采用两种互补任务:多掩码概率的掩码语言建模和蛋白质序列补全,使模型仅从蛋白质序列就能学到更丰富的表示。实验表明,Ankh3在二级结构预测、荧光预测等下游任务中表现优异,尤其在模型未曾训练过的任务上展现出强大泛化能力,为蛋白质设计和分析开辟了新路径。
法国波尔多大学研究团队开发了一个突破性框架,用于神经退行性痴呆症的差异化诊断。该框架将3D脑部MRI转换为文本报告,并利用强化学习优化的大语言模型进行详细诊断推理。不同于传统"黑箱"方法,这一系统能生成透明、有因果关系的解释,同时保持高诊断准确率。研究显示,通过群组相对策略优化(GRPO)训练的轻量级模型能展现复杂推理行为,包括假设检验和非线性思考,提供与临床决策流程一致的排序诊断结果。
这项研究提出了CLUE框架,首次能够生成自然语言解释来揭示AI事实核查系统不确定性的来源。与现有方法不同,CLUE能识别文本片段间的冲突与一致关系,并解释它们如何影响模型的预测不确定性。实验表明,CLUE生成的解释在三种语言模型和两个事实核查数据集上都更忠实于模型不确定性,用户评价其更有帮助、信息更丰富、冗余更少且逻辑更一致。CLUE不需要微调或架构更改,适用于任何白盒语言模型,为事实核查提供了实用支持。
来自香港科技大学和MiniMax的研究团队开发了SynLogic,一个可合成35种逻辑推理任务的框架与数据集,填补了AI逻辑训练资源缺口。研究表明,在SynLogic上进行强化学习训练显著提升了模型逻辑推理能力,32B模型在BBEH测试中超越了DeepSeek-R1-Distill模型6个百分点。更值得注意的是,将SynLogic与数学和编程数据混合训练不仅提高了这些领域的学习效率,还增强了模型的泛化能力,表明逻辑推理是构建通用AI推理能力的重要基础。