
AI芯片的基础关键参数”,算力是衡量计算机处理信息能力的重要指标,其中AI算力专注于AI应用,常见单位为TOPS和TFLOPS,通过GPU、ASIC、FPGA等专用芯片提供算法模型训练和推理。算力精度作为衡量算力水平的一种方式,其中FP16、FP32应用于模型训练,FP16、INT8应用于模型推理。
AI芯片通常采用GPU和ASIC架构。GPU因其在运算和并行任务处理上的优势成为AI计算中的关键组件,它的算力和显存、带宽决定了GPU的运算能力。GPU的核心可分为CudaCore、Tensor Core等;Tensor Core是增强AI计算的核心,相较于并行计算表现卓越的Cuda Core,它更专注于深度学习领域,通过优化矩阵运算来加速AI深度学习的训练和推理任务,其中Nvidia Volta Tensor Core架构较Pascal架构(Cuda Core) 的AI吞吐量增加了12倍。此外,TPU作为ASIC的一种专为机器学习设计的AI芯片,相比于CPU、GPU,其在机器学习任务中的高能效脱颖而出,其中TPU v1在神经网络性能上最大可达同时期CPU的71倍、GPU的2.7倍。

















好文章,需要你的鼓励
随着AI技术不断发展,交通运输行业正迎来重大变革。MIT研究显示,AI将很快自动化价值650亿美元的交通工作,大幅提升运输效率。从陆地到海空,AI正在推动全方位的交通创新。斯坦福专家强调,AI将通过基础模型、合成数据和数字孪生等技术,实现从单一车辆自动化到整个交通网络优化的跨越式发展,同时解决可持续性、安全性和公平性等关键挑战。
香港科技大学团队发表重要研究,开发GIR-Bench测试基准评估统一多模态AI模型的推理与生成能力。研究发现即使最先进的AI模型在理解与生成之间也存在显著差距,无法有效将推理过程转化为准确的视觉生成,为AI行业发展提供重要警示。
波兰研究团队开发ORCA数学基准测试,对五个主流大语言模型进行评估。结果显示ChatGPT-5、Gemini 2.5 Flash、Claude Sonnet 4.5、Grok 4和DeepSeek V3.2的准确率均低于63%。测试涵盖生物化学、工程建筑、金融经济等七个领域的500道数学题目。研究发现模型主要在四舍五入和计算错误方面存在问题,表明自然语言推理进步并未直接转化为可靠的计算能力。
Meta超级智能实验室联合麻省理工学院开发了SPG三明治策略梯度方法,专门解决扩散语言模型强化学习训练中的技术难题。该方法通过上下界策略为AI模型提供精确的奖惩反馈机制,在数学和逻辑推理任务上实现了显著性能提升,为AI写作助手的智能化发展提供了新的技术路径。