AI芯片的基础关键参数”,算力是衡量计算机处理信息能力的重要指标,其中AI算力专注于AI应用,常见单位为TOPS和TFLOPS,通过GPU、ASIC、FPGA等专用芯片提供算法模型训练和推理。算力精度作为衡量算力水平的一种方式,其中FP16、FP32应用于模型训练,FP16、INT8应用于模型推理。
AI芯片通常采用GPU和ASIC架构。GPU因其在运算和并行任务处理上的优势成为AI计算中的关键组件,它的算力和显存、带宽决定了GPU的运算能力。GPU的核心可分为CudaCore、Tensor Core等;Tensor Core是增强AI计算的核心,相较于并行计算表现卓越的Cuda Core,它更专注于深度学习领域,通过优化矩阵运算来加速AI深度学习的训练和推理任务,其中Nvidia Volta Tensor Core架构较Pascal架构(Cuda Core) 的AI吞吐量增加了12倍。此外,TPU作为ASIC的一种专为机器学习设计的AI芯片,相比于CPU、GPU,其在机器学习任务中的高能效脱颖而出,其中TPU v1在神经网络性能上最大可达同时期CPU的71倍、GPU的2.7倍。
好文章,需要你的鼓励
随着AI策略成熟,CIO开始重新考虑对公有云的依赖,私有云和本地环境重新受到关注。调查显示,67%的企业领导计划在未来12个月内将部分AI数据迁移至非云环境。主要原因包括成本可预测性、数据隐私保护、安全问题和云集成挑战。对于持续的AI工作负载,购买自有GPU比租用公有云更经济。私有云支出增长更快,预计2025年将有54%的组织在私有云上投入超过1000万美元。
沙特TachyHealth团队开发的32亿参数医疗AI模型Gazal-R1,通过创新的双阶段训练方法在医疗推理任务上超越了12倍大的模型,在MedQA等测试中取得87.1%的优异成绩,展现了精巧训练策略胜过规模扩张的重要启示,为资源有限的医疗AI研究提供了新路径。
本文深入分析了从传统AI发展到AGI过程中可能出现的智能爆发现象。基于AI专家共识的2040年AGI实现预期,文章探讨了七种主要发展路径,重点关注突破性的"登月路径"。智能爆发理论认为,智能可以像原子链式反应一样相互促进,快速产生大量新智能。文章预测2038-2039年可能发生智能爆发,随后在2040年实现AGI,但也指出了关于智能爆发的启动、控制和潜在风险等争议问题。
奥地利维也纳医科大学研究团队开发了RetFiner技术,通过让眼科AI模型同时学习OCT图像和医疗文字描述,显著提升了诊断准确率。该方法采用四种训练任务让AI模型建立图像与文字的深层联系,在三个主流眼科AI模型上实现了2-6个百分点的性能提升,为医学AI发展开辟了新方向。