下面以经典的 FrozenLake 环境(一个 4x4 的网格世界)为例,使用 Python 和 OpenAI Gym 库来实现 Q-learning 算法。
import numpy as np
import gym
# 创建FrozenLake环境
env = gym.make('FrozenLake-v1', is_slippery=False)
# 初始化参数
num_states = env.observation_space.n
num_actions = env.action_space.n
Q = np.zeros((num_states, num_actions))
num_episodes = 1000
max_steps = 100
alpha = 0.1 # 学习率
gamma = 0.99 # 折扣因子
epsilon = 0.1 # 探索率
for episode in range(num_episodes):
state = env.reset()
for step in range(max_steps):
# 选择动作(ε-贪心策略)
if np.random.uniform(0, 1) < epsilon:
action = env.action_space.sample()
else:
action = np.argmax(Q[state, :])
# 执行动作,获得下一个状态和奖励
next_state, reward, done, info = env.step(action)
# 更新Q函数
best_next_action = np.argmax(Q[next_state, :])
td_target = reward + gamma * Q[next_state, best_next_action]
td_error = td_target - Q[state, action]
Q[state, action] += alpha * td_error
# 状态更新
state = next_state
# 回合结束
if done:
break
print("训练完成后的Q表:")
print(Q)
其中:
gym.make('FrozenLake-v1')
创建环境;[num_states, num_actions]
,用于存储每个状态-动作对的价值;为了平衡探索和利用,ε-贪心策略以 ε 的概率进行探索 (随机选择动作),以 1-ε 的概率进行利用(选择当前最优动作)。学习率决定了新获取的信息在多大程度上覆盖旧的信息,较高的学习率意味着对新信息的依赖性更强。折扣因子用于权衡即时奖励和未来奖励的重要性。接近1的折扣因子表示更加看重未来的奖励。在满足一定条件下,如所有状态-动作对被无限次访问、学习率满足罗宾条件等,Q-learning 算法能够保证收敛到最优 Q 函数。Q-learning 是强化学习中最经典和基础的算法之一,它通过学习状态-动作值函数来指导智能体的决策。通过不断地与环境交互和更新 Q 值,智能体最终能够学到一个最优策略,即在每个状态下选择使得长期累积奖励最大的动作。
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。