下面以经典的 FrozenLake 环境(一个 4x4 的网格世界)为例,使用 Python 和 OpenAI Gym 库来实现 Q-learning 算法。
import numpy as np
import gym
# 创建FrozenLake环境
env = gym.make('FrozenLake-v1', is_slippery=False)
# 初始化参数
num_states = env.observation_space.n
num_actions = env.action_space.n
Q = np.zeros((num_states, num_actions))
num_episodes = 1000
max_steps = 100
alpha = 0.1 # 学习率
gamma = 0.99 # 折扣因子
epsilon = 0.1 # 探索率
for episode in range(num_episodes):
state = env.reset()
for step in range(max_steps):
# 选择动作(ε-贪心策略)
if np.random.uniform(0, 1) < epsilon:
action = env.action_space.sample()
else:
action = np.argmax(Q[state, :])
# 执行动作,获得下一个状态和奖励
next_state, reward, done, info = env.step(action)
# 更新Q函数
best_next_action = np.argmax(Q[next_state, :])
td_target = reward + gamma * Q[next_state, best_next_action]
td_error = td_target - Q[state, action]
Q[state, action] += alpha * td_error
# 状态更新
state = next_state
# 回合结束
if done:
break
print("训练完成后的Q表:")
print(Q)
其中:
gym.make('FrozenLake-v1')
创建环境;[num_states, num_actions]
,用于存储每个状态-动作对的价值;为了平衡探索和利用,ε-贪心策略以 ε 的概率进行探索 (随机选择动作),以 1-ε 的概率进行利用(选择当前最优动作)。学习率决定了新获取的信息在多大程度上覆盖旧的信息,较高的学习率意味着对新信息的依赖性更强。折扣因子用于权衡即时奖励和未来奖励的重要性。接近1的折扣因子表示更加看重未来的奖励。在满足一定条件下,如所有状态-动作对被无限次访问、学习率满足罗宾条件等,Q-learning 算法能够保证收敛到最优 Q 函数。Q-learning 是强化学习中最经典和基础的算法之一,它通过学习状态-动作值函数来指导智能体的决策。通过不断地与环境交互和更新 Q 值,智能体最终能够学到一个最优策略,即在每个状态下选择使得长期累积奖励最大的动作。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。