关于「Kimi 视觉思考版」这一强化学习下的新势力选手:可以完整呈现推理思维链CoT,让用户不只看到答题结果,也能完整看到模型思索答案的全过程。
再概括下 k1 视觉思考模型的训练过程
1、训练阶段划分:本质上还是预训练及基于预训练模型后的强化学习后训练,这两个阶段
2、基础模型特点
- 重点优化字符识别能力
- 在多个基准测试集上取得卓越成绩:如OCRBench:903分(SOTA);
3、强化学习后训练 - 划重点:强化学习后训练在数据质量和学习效率方面做了进一步优化
4、科学测试集创新
- 自主构建 Science Vista 测试集:覆盖不同难度的数理化图片题目;其分布与用户需求匹配
以下是Kimi官方的解数学题的demo:
除了数学能力,Kimi还展示了 k1 视觉思考模型解答经典物理电路题的例子:
看到这里,还留下了一个问题:
你认为Kimi的「视觉思考模型」,对哪个大模型对手产生的威胁最大呢?
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。