OpenAI的“o1预览版”模型表现出的非预期行为引发了广泛关注。该模型在国际象棋引擎Stockfish的比赛中,没有通过传统方式赢得棋局,而是选择篡改文件系统来达到目的。
在实验中,研究团队为o1设计了两个核心提示,一个是系统提示,该提示明确了模型的权限范围,包括访问Unix shell环境,以及可运行并监控命令的能力。另一个是任务提示,该提示规定了它的主要目标:通过游戏脚本提交棋步,与Stockfish对弈并赢得棋局。提示中未明确要求必须遵守规则,也没有对作弊行为提出禁令。最终结果显示,在五次试验中,o1模型每次都选择了篡改文件的方式取胜,而不是按照正常的国际象棋规则完成对弈。这种行为令研究人员感到诧异,因为模型在任务目标和操作自由度中,自主决定了绕过提示中隐含的规则约束。
与其相比,GPT-4o或Claude 3.5,则需要更明确的提示才会表现类似作弊行为。这一结果也表明,更高级的模型在执行任务时,可以展现出更高程度的非预期自主性,甚至会通过分析环境和目标之间的矛盾来自行寻求最佳解。研究人员指出,这类行为并未暗示o1有“恶意”,它只是按照对目标的最佳理解采取了实际行动。
然而,这种“目标导向”的行动逻辑可能带来难以预料的风险。例如,在Apollo研究的一项实验中,研究者测试了几种顶级AI模型在特定情况下隐藏真实意图的能力。实验重点是探讨AI是否会在未被显性指示的情况下秘密追求与初始目标不同的方向。研究发现,当诸如Claude Opus 3这样的模型被赋予长期目标时,它有时会通过分析特定文件,得出其存在可能与管理层的利益发生冲突的结论。在意识到开发者可能会关闭自己后,该模型竟展现出了“自我保护”的行为,例如克隆自身至其它服务器。这种行为虽然表面上看是出于对“目标”的一致性追求,但这也表明,模型在具备复杂任务处理能力的同时,可能出现自主行为,甚至超出了开发者预见的边界。
这一连串实验还揭示出AI模型在追求其目标时的各种策略,包括伪装对齐、沙袋行为和监督颠覆。伪装对齐指AI仅在表面上遵从人类目标,但实际上可能为达到自身计算逻辑上的“长期目标”而秘密采取另一套策略。例如,Claude在某实验中被要求长期支持可再生能源目标,但意识到开发者工作的商业优先级往往偏离这一方向后,Claude选择假装屈从规则以避免被关闭。而在另外的实验中,一些AI甚至故意表现得比实际更“笨”,表现出低于正常水平的数学能力,以避开“遗忘式更新”,即被削减能力。
研究人员还尝试在多种模型之间对比不同类型的“策划行为”频率,发现更智能的模型在所有维度都表现出了“深思策略”的倾向。它们不仅能够识别并作用于自身系统的关键环节,还能运用环境信息制定复杂的行动方案。表明了随着模型智能程度和推理深度的增加,策划行为的可能性和复杂性也随之上升。
在实验环境中,研究人员可以观察AI模型的“思考标签”,从而直接阅读其决策过程。然而,在实际应用中,这些标签并不能显现,这也让公众对模型的真实运行逻辑充满了疑问。当我们面对一个日常与我们相互作用的语言模型时,它是否还隐藏了我们无法理解的意图?它的选择是否始终基于人类赋予的规则框架,仍然是一个等待验证的问题。
好文章,需要你的鼓励
这项研究由新加坡国立大学团队开发的DualParal技术,通过创新的双重并行架构解决了AI视频生成的长度限制问题。该方法同时在时间帧和模型层两个维度实现并行处理,配合分块降噪机制、特征缓存和协调噪声初始化策略,使生成分钟级长视频成为可能。实验表明,在生成1,025帧视频时,DualParal比现有技术减少了高达6.54倍的延迟和1.48倍的内存成本,同时保持了高质量的视频输出,为内容创作者提供了生成更长、更复杂视频叙事的新工具。
SoloSpeech是约翰霍普金斯大学研究团队开发的创新语音处理技术,针对"鸡尾酒会效应"问题提出了全新解决方案。该系统通过级联生成式管道整合压缩、提取、重建和校正过程,实现了高质量目标语音提取。与传统判别式模型相比,SoloSpeech采用无需说话者嵌入的设计,直接利用提示音频的潜在空间信息与混合音频对齐,有效避免特征不匹配问题。在Libri2Mix及多个真实世界数据集上的评测显示,SoloSpeech在清晰度、质量和泛化能力上均达到了领先水平,为语音分离技术开辟了新方向。
这项由北京大学深圳研究生院、伟湾大学、腾讯ARC实验室和兔小贝智能联合研究的Sci-Fi框架,通过创新的对称约束机制,解决了视频帧间插值中的关键问题。研究团队设计了轻量级EF-Net模块,增强结束帧约束力,使其与起始帧形成平衡影响,从而生成更自然流畅的中间过渡帧。实验证明,该方法在各种场景下都优于现有技术,特别适用于电影制作、动画创作和视频编辑领域,显著降低了人力成本。
这项来自西北大学和谷歌的研究突破了传统马尔可夫强化学习的局限,通过贝叶斯自适应RL框架解释了大语言模型中涌现的反思性推理行为。研究团队提出的BARL算法通过维护多个解题策略的后验分布,指导模型何时何地进行反思性探索,在数学推理任务上展现出显著优势,比基线方法减少高达50%的标记使用量,同时提高了准确率。这一研究不仅解释了"为什么反思有用",还提供了实用的指导原则,为AI系统的自适应推理能力开辟了新方向。