近年来,GPT系列这种大型人工智能系统的能力得到了指数级提升,从三年前无法解答高中水平的数学问题,到如今已经能够满分通过斯坦福大学研究生广义相对论课程考试。这些系统已经具备了记忆和整合知识的能力,它们可以调用海量信息,并以惊人的速度解读复杂内容。那么一个有趣的问题是:AI是否可以超越人类极限的高维思考,实现像爱因斯坦那样的智力飞跃?毕竟,AI语言模型基于海量参数,它们操作着一个“亿维空间”。
斯坦福大学理论物理学家、谷歌DeepMind BlueShift项目的创始人和领导者亚当·布朗(Adam Brown)表示,虽然AI拥有惊人的记忆力和知识整合能力,但它们的“推理性创造”与人类尚不可相提并论。爱因斯坦式的突破不仅是建立在已有知识上的插值(interpolation),更涉及对基础假设的质疑,以及对自然规律转变全新视角的能力。举个例子,如果一位平均智商的人类具备完美记忆力,掌握了所有的科学知识,他们是否能做出像爱因斯坦一样的思考?历史告诉我们,答案是未必。
突破往往来源于质疑现有范式,而不是简单的信息堆积。AI目前的设计更多是通过已有数据中“拟合”规律,而非“超脱”规律去发明新的科学领域。此外,许多重要的科学突破并非仅来源于算力和知识量,而是源于感知能力和直觉层面的思维灵感。例如,当人类思考四维宇宙或广义相对论所涉及的高维时,根本不是在真实的高维空间“感知”,而是通过数学符号、图形表示和直觉推导来间接理解问题。而AI,即便操作着亿维的参数空间,也未必能够获得这样的概念性灵感。
假设AI某一天能够从牛顿经典力学出发,推导出类似广义相对论的科学理论,那将标志着人类创造的机器跨越了“科学发现”的最后一个边界。但是,这个假设中仍然有难以逾越的两大难点。首先是理解与再创造,爱因斯坦广义相对论其中的核心价值,在于改变了已有定律的框架,还融合了抽象数学与物理直觉的深度联结。AI是否具备这样的能力,能否理解并重新创造这样的联结,仍然未知。另一个是新范式的产生,历史上许多突破在于采用全新的视角重构认知,例如量子力学中波粒二象性的诠释,这不仅需要技术化的解决能力,更需要突破性的“质问惯性”。AI是否真正有能力打破自己训练中获得的规律范式,也尚未获得证明。
布朗表示,从目前AI发展的速度来看,这样的跨越能力或许能在未来十年之内实现。但仍需明确的是,AI实现类似广义相对论的发明,并不一定意味着其思维本质或洞察能力真正等同于人类。AI的优势在于可以通过海量数据发现人类忽略的模式,而非从无到有地提供原始的新框架。AI更现实的角色并不是“成为爱因斯坦”,而是成为全人类的科研助手。通过大量阅读和系统分析,AI可以发现跨领域的联系,并提出基于已有数据的假设。物理学问题往往有双重本质:从描述到数学表示,然后再到解决。虽然AI在数学解题中表现卓越,但在问题本质的描述与框架建立上仍需依赖人类的主导。
随着AI技术不断进步,“人造爱因斯坦”这一构想从遥不可及逐步变得可以憧憬。但当前阶段,人工智能的长板在于海量计算与数据处理,而人类的强项则在于直觉和创新思维。一旦两者找到最佳协作方式,实现一种“人机共生”的研究生态,或许新的广义相对论就在我们眼前。
好文章,需要你的鼓励
当前企业面临引入AI的机遇与挑战。管理层需要了解机器学习算法基础,包括线性回归、神经网络等核心技术。专家建议从小规模试点开始,优先选择高影响用例,投资数据治理,提升员工技能。对于影子IT现象,应将其视为机会而非问题,建立治理流程将有效工具正式化。成功的AI采用需要明确目标、跨部门协作、变革管理和持续学习社区建设。
这项由东京科学技术大学等机构联合发布的研究提出了UMoE架构,通过重新设计注意力机制,实现了注意力层和前馈网络层的专家参数共享。该方法在多个数据集上显著优于现有的MoE方法,同时保持了较低的计算开销,为大语言模型的高效扩展提供了新思路。
美国垃圾收集行业2024年创收690亿美元,近18万辆垃圾车每周运营六至七天,每日停靠超千次。设备故障成为行业最大隐性成本,每辆车年均故障费用超5000美元。AI技术通过实时监控传感器数据,能提前数周预测故障,优化零部件库存管理,减少重复维修。车队报告显示,预测性维护每辆车年节省高达2500美元,显著提升运营效率和服务可靠性。
小米团队开发的MiMo-7B模型证明了AI领域"小而精"路线的可行性。这个仅有70亿参数的模型通过创新的预训练数据处理、三阶段训练策略和强化学习优化,在数学推理和编程任务上超越了320亿参数的大模型,甚至在某些指标上击败OpenAI o1-mini。研究团队还开发了高效的训练基础设施,将训练速度提升2.29倍。该成果已完全开源,为AI民主化发展提供了新思路。