美国研究人员展示了一种经过训练的人工智能算法,该算法通过分析睡眠测试的视频记录,可以识别快速眼动睡眠行为障碍 (RBD) —— 这是一些严重神经系统疾病的早期预警信号。
由西奈山医院科学家领导的研究团队表示,RBD 可能发生在其他方面健康的成年人身上,在美国影响约 100 万人,全球影响约 8000 万人,但"几乎在所有病例中,都是帕金森病或痴呆症的早期征兆。"
RBD 患者会在快速眼动睡眠阶段通过发声和突然的暴力性手臂和腿部动作来实际演绎生动且常常令人不快的梦境,这个阶段约占整晚睡眠的 20%。通常情况下,快速眼动睡眠阶段不应该有身体活动,这个阶段也是做梦最常发生的时期。
RBD 的发病通常是渐进的,但会随时间恶化,在严重的情况下可能导致患者或睡眠伴侣受伤。研究人员指出,这种疾病很难诊断,通常需要进行夜间睡眠研究或多导睡眠图检查,这需要在睡眠实验室过夜,而且经常会与其他疾病混淆。
在发表于《神经病学年鉴》杂志的研究中,研究人员指出,虽然在睡眠研究期间会系统地记录视频数据,但"这些数据很少被审查,而且在测试解读后往往会被丢弃。"
一个主要问题是,由于床单或毯子可能会遮挡 RBD 活动,人们认为需要使用非常昂贵且并不普及的研究级 3D 摄像机来检测该疾病。
然而,西奈山团队表示,通过将他们的算法应用于普通的 2D 摄像机可以规避这个问题,研究中的诊断准确率接近 92%。他们的研究集中在睡眠中心对约 80 名 RBD 患者的记录,以及一个对照组约 90 名无 RBD 但有其他睡眠障碍或无睡眠问题的患者。
西奈山伊坎医学院运动障碍和肺部、重症监护及睡眠医学专家 Emmanuel During 表示:"这种自动化方法可以在解读睡眠测试期间整合到临床工作流程中,以增强和促进诊断,避免漏诊。"
她补充道:"这种方法还可以根据睡眠测试期间显示的动作严重程度来指导治疗决策,最终帮助医生为个别患者定制护理计划。"
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。