美国研究人员展示了一种经过训练的人工智能算法,该算法通过分析睡眠测试的视频记录,可以识别快速眼动睡眠行为障碍 (RBD) —— 这是一些严重神经系统疾病的早期预警信号。
由西奈山医院科学家领导的研究团队表示,RBD 可能发生在其他方面健康的成年人身上,在美国影响约 100 万人,全球影响约 8000 万人,但"几乎在所有病例中,都是帕金森病或痴呆症的早期征兆。"
RBD 患者会在快速眼动睡眠阶段通过发声和突然的暴力性手臂和腿部动作来实际演绎生动且常常令人不快的梦境,这个阶段约占整晚睡眠的 20%。通常情况下,快速眼动睡眠阶段不应该有身体活动,这个阶段也是做梦最常发生的时期。
RBD 的发病通常是渐进的,但会随时间恶化,在严重的情况下可能导致患者或睡眠伴侣受伤。研究人员指出,这种疾病很难诊断,通常需要进行夜间睡眠研究或多导睡眠图检查,这需要在睡眠实验室过夜,而且经常会与其他疾病混淆。
在发表于《神经病学年鉴》杂志的研究中,研究人员指出,虽然在睡眠研究期间会系统地记录视频数据,但"这些数据很少被审查,而且在测试解读后往往会被丢弃。"
一个主要问题是,由于床单或毯子可能会遮挡 RBD 活动,人们认为需要使用非常昂贵且并不普及的研究级 3D 摄像机来检测该疾病。
然而,西奈山团队表示,通过将他们的算法应用于普通的 2D 摄像机可以规避这个问题,研究中的诊断准确率接近 92%。他们的研究集中在睡眠中心对约 80 名 RBD 患者的记录,以及一个对照组约 90 名无 RBD 但有其他睡眠障碍或无睡眠问题的患者。
西奈山伊坎医学院运动障碍和肺部、重症监护及睡眠医学专家 Emmanuel During 表示:"这种自动化方法可以在解读睡眠测试期间整合到临床工作流程中,以增强和促进诊断,避免漏诊。"
她补充道:"这种方法还可以根据睡眠测试期间显示的动作严重程度来指导治疗决策,最终帮助医生为个别患者定制护理计划。"
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
KAIST AI团队通过深入分析视频生成AI的内部机制,发现了负责交互理解的关键层,并开发出MATRIX框架来专门优化这些层。该技术通过语义定位对齐和语义传播对齐两个组件,显著提升了AI对"谁对谁做了什么"的理解能力,在交互准确性上提升约30%,为AI视频生成的实用化应用奠定了重要基础。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
乔治亚理工学院和微软研究团队提出了NorMuon优化器,通过结合Muon的正交化技术与神经元级自适应学习率,在1.1B参数模型上实现了21.74%的训练效率提升。该方法同时保持了Muon的内存优势,相比Adam节省约50%内存使用量,并开发了高效的FSDP2分布式实现,为大规模AI模型训练提供了实用的优化方案。