自动驾驶汽车以及能够行走、交谈并与我们并肩工作的人形机器人,是 AI 在不久的将来改变世界的两个令人惊叹的方式。
但要想安全有效地运行,这些物理 AI 工具和应用必须能够理解现实世界。
在今年的拉斯维加斯消费电子展上,NVIDIA 刚刚宣布推出其 Cosmos 平台,该平台旨在加速物理 AI 系统的开发。
被称为"机器人领域的 ChatGPT 时刻",Cosmos 能够生成海量合成数据。尽管这些数据是人工创建的,但它们与真实世界足够接近,足以让机器人、自动驾驶汽车和其他物理 AI 算法从中学习。
然而,一些人认为,无论多少合成数据都无法完全模拟机器需要准备应对的所有现实场景。这就是为什么特斯拉花费多年时间,通过其搭载传感器的汽车收集真实世界数据的原因。CEO 埃隆·马斯克在推特上写道:"两种数据可以无限扩展:合成数据存在'是否真实?'的问题,而真实世界的视频则不存在这个问题。"
争论的焦点在于,合成数据缺乏真实世界的混沌不可预测性和复杂性,而这些对于构建全面且安全的 AI 系统至关重要。让我们更详细地探讨这个问题。
合成数据与真实世界数据的对比
在自动驾驶系统中,视觉数据(图像)用于训练算法,决定车辆如何对道路上的不同条件和情况做出反应。这些数据可以通过安装在车辆上的摄像头捕获(真实世界数据),也可以由 AI 算法根据研究真实世界数据所学到的规则生成(合成数据)。
这两种方法都有其优势和劣势。
合成数据的收集通常比真实世界数据更快、更经济。无需实地收集数据,只需由机器生成即可。
这也能带来安全方面的好处。例如,在道路上测试自动驾驶汽车显然存在一定风险,但如果只是模拟行驶,这些风险就可以消除。
此外,情境、环境和许多其他变量都可以自定义,而不必等待理想的数据收集条件在现实世界中出现。例如,研究人员可以模拟罕见的天气事件,在危险场景中测试自动驾驶车辆,或模拟复杂的制造缺陷,而无需承担现实世界的风险或延迟。
生成合成数据还可以减少或消除现实世界中可能存在的隐私和数据保护问题,因为不存在敏感个人数据被意外存储或泄露的风险。
这种情况在收集真实世界数据时可能会发生。例如,自动驾驶汽车的摄像头捕获的车牌号码可能会被关联到车主并用于识别和追踪他们。
正如马斯克指出的,真实世界数据具有不可否认的真实性优势。难以通过合成方式生成的混沌和难以预测的人类行为,更有可能在真实数据中得到体现。
监管也可能是一个问题。AI 相关法律正在快速发展,监管机构可能会出于安全考虑,要求某些模型或应用在特定时期或特定地区必须使用真实世界数据进行训练。
权衡选择
事实上,真实世界数据和合成数据对于训练下一代物理 AI 车辆和机器人都至关重要。
两者都具有独特的优势和挑战,采用混合方法可能是通往成功的最佳途径。
关键在于识别哪种方法最适合特定用例。例如,合成数据可能更适用于处理敏感信息或在危险条件下操作的任务或应用。
而真实世界数据则可能在捕捉动态人类行为或可能遇到混沌不可预见事件的情况下表现更好。
这意味着,采用平衡方法的 AI 项目,由理解合成数据和真实世界数据如何相辅相成而非相互竞争的人员领导,更有可能创造真正的商业价值。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。