在我们这个高科技世界中,最大的问题之一是何时能看到以先进机器人形式出现的物理AI代理。
人们可能会争论这些机器人是否会呈现人形,或者会有其他形态。
但无论如何,业界普遍认为,这些新型伙伴即将以某种形式进入我们的世界。
Nvidia的研究员Jim Fan近期就物理AI的即将到来发表了看法。
他在平安夜发布在X平台上表示:"机器人不会被孤立训练。它们将作为'钢铁舰队'在实时图形引擎中模拟,并在大规模集群中部署,以产生下一个万亿级高质量训练 Token。大多数实体代理将在模拟环境中诞生,当准备就绪时,将零样本迁移到现实世界。它们将共享一个'蜂巢思维',通过来回传递潜在嵌入来协调多代理物理任务。"
然而,在一篇深入探讨AI代理机制的LinkedIn文章中,他也暗示这种智能首先将主要以非实体形式存在。
Fan写道:"在现实世界拥有上百万机器人之前,我们首先会在虚拟世界看到数十亿个实体代理。游戏是我2024年致力的第二个重要领域。AI和游戏天生一对,他们的美好联姻才刚刚开始。"
AI的演变
这篇文章中一个有趣的观点是,Fan将游戏环境称为"通用AI萌芽的原始汤"。以Minecraft算法为例,他指出代理受限于其所处环境的复杂性。
他写道:"还有很多游戏需要极其先进的感知、敏捷性、探索、推理和规划能力。我们才刚刚触及表面。"
注意力机制
Fan还提到了当今大语言模型引擎使用的一些高级策略。
我曾详细写过现代 Transformer 作为大语言模型设计关键部分的概念。Transformer 作为一种"注意力机制",使模型能够更多地关注对人类重要的内容,而较少关注不太相关的内容。这本身就减少了任何给定任务的资源密集度,为高 Token 系统创造了巨大的效率。
他写道:"Token 是由代理本身通过探索主动选择的。它(代理)可以选择尝试最大程度减少其内部不确定性的事物 - 有点像人类好奇心的运作方式。"
思考AI引擎具有这种驱动力,以及它们如何获取知识,或者用Fan的话说,"减少其内部不确定性"是很有趣的 - 这实际上听起来有点像对学习本身的华丽描述...
新型NPC
"我相信2024年是一个转折点,"Fan继续说。"数字版西部世界即将到来,这将彻底改变整个行业。"
当他描述非玩家角色 (NPC) 将如何行动时,想想我们过去如何看待NPC - 作为僵硬的、明显人工的角色,与完全的人类玩家形成对比。
Fan补充说:"游戏将真正富有生命力。角色们将与人类和彼此互动,建立关系,在其生命周期内采取一致的行动,并以类似人类的方式做出反应。每个游戏都将具有无限的重玩价值,每个玩家都将有独特的定制体验。"
如果你已经听过年轻游戏玩家谈论在当今游戏中与NPC建立关系,那就请做好准备,因为随着NPC变得更像人类,这种情况将会扩大。
Inworld的Ilya Gelfenbeyn在去年1月评论这一进展时写道:"随着视频游戏的发展,支撑NPC的技术也必须随之发展。NPC行为的演变是由技术进步塑造的,为更复杂的特征脚本(在业内也称为工作系统)开创了新机会。简单来说,这意味着NPC可以根据设定的变量以更多方式做出响应。"
未来展望
最终,我们很可能会看到这些进步以游戏化现实的形式出现。它们将以娱乐和探索性玩法的形式出现,但可能会超越这些范畴,成为我们人类体验中不可或缺的部分。
至于物理机器人,我们可能也会看到它们以实用的方式发展。人们总是谈论管家机器人,以及我们何时能拥有它。同时,人口正在下降,劳动力需求旺盛。我们很快就会看到这些自动机器人投入工作。
无论如何,我会在2025年继续为您带来更多发展动态。
好文章,需要你的鼓励
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
ByteDance智能创作实验室发布的Phantom-Data是首个大规模跨情境主体一致性视频生成数据集,包含约100万个身份一致配对样本。该数据集通过创新的三阶段构建管道,从5300万视频和30亿图像中精选高质量跨场景配对,有效解决AI视频生成中的"复制粘贴"问题,显著提升文本遵循能力和视觉质量。
被盗凭证导致80%的企业数据泄露。随着AI智能体投入生产,管理10万员工的企业将需要处理超过100万个身份。传统身份访问管理架构无法应对智能体AI的大规模部署。领先厂商正采用蓝牙低功耗技术替代硬件令牌,实现基于距离的身份验证。行为分析可实时捕获被入侵的智能体,零信任架构扩展至智能体部署。这代表了自云计算普及以来最重要的安全变革。
普林斯顿大学研究团队开发了ReasonFlux-PRM,这是首个能深度理解AI复杂思维过程的评分系统。不同于传统只看最终答案的评估方法,新系统能评判AI思考轨迹的每个步骤质量,在数学和科学推理任务上实现了平均4.5%-12.1%的性能提升,为AI教育和训练提供了突破性的解决方案。