Meta 开发出一款机器学习模型,其研究人员称该模型可以在近乎实时的情况下在约 36 种语言之间进行语音到语音的翻译。
这个名为 SEAMLESSM4T 的基础模型让人联想到《银河系漫游指南》中的巴别鱼,它通过利用互联网音频片段,巧妙地避开了繁琐的数据标注过程,在 450 万小时的人类语音记录上进行训练。
Facebook 母公司的研究团队今天在《自然》杂志上发表论文称,这个相对开放的模型可以作为其他应用程序的基础,支持"在各种场景下实现多语言即时交流"。
爱沙尼亚塔林理工大学语音处理教授 Tanel Alumae 在随附文章中表示,该模型在包含 450 万小时多语言口语音频的海量数据集上进行预训练,以帮助建立数据模式,"这使得模型可以在无需大量定制训练数据的情况下,更容易针对特定任务进行微调"。
研究团队还使用了一种新的自动化技术来避免标注大量训练数据。
Alumae 解释说:"SEAMLESS 团队最巧妙的策略之一是从互联网上'挖掘'跨语言对齐的训练数据对 — 比如一种语言的音频片段与另一种语言的字幕相匹配。从一些已知可靠的数据开始,作者训练模型识别两个内容片段(如视频片段和相应字幕)在含义上是否真正匹配。"
这种技术帮助 Meta 的无缝通信团队收集了约 443,000 小时带有匹配文本的音频,并对齐了约 30,000 小时的语音对,然后用于进一步训练模型。Alumae 赞扬了 Meta 对模型的开放程度 - 这与可用于创建其他应用程序的 Llama 系列大语言模型类似。"对于缺乏从头构建这些模型所需大量计算资源的研究人员来说,这种开放程度是巨大的优势。"
然而,也有人批评 LLaMA-3 的"明显非开放使用限制"。
据称,Meta 的新模型还可以将语音翻译成多达 100 种语言的文本。Alumae 指出,虽然这个数字令人印象深刻,但与世界上约 7,000 种语言相比还相差甚远。
他说:"该工具在人类相对容易处理的许多情况下仍然存在困难 — 例如在嘈杂环境中的对话或口音很重的人之间的对话。不过,作者利用真实世界数据的方法将为开发能够媲美科幻作品的语音技术开辟一条有前途的道路。"
康奈尔大学信息科学系的 Allison Koenecke 在第二篇随附文章中指出,虽然这一突破可能代表着比人工更高效和更具成本效益的转录和翻译方法,但"必须要理解这些技术失效的方式 — 对某些群体的影响尤其不成比例"。
她说:"未来的工作必须确保语音技术研究人员能够改善性能差异,并让用户充分了解这些模型相关的潜在利益和危害。"在论文中,Meta 描述了如何衡量语言的"毒性"和性别偏见。
研究人员还表示,自然语音"包含一系列韵律 — 节奏、重音、语调或声调 — 和情感成分,这些都值得进一步研究。"
他们补充说:"要创建感觉自然和有机的语音到语音翻译系统,应该将更多研究投入到保留表现力的输出生成中。此外,要完全实现巴别鱼的愿景,需要在低延迟语音翻译研究方面进行更深入的投入。开发能够流式处理的系统(即在输入句子呈现时进行增量翻译)可能会增加这些系统在各种机构环境中的采用率。我们希望 SEAMLESSM4T 能为这两个研究领域开辟新的可能性。"
好文章,需要你的鼓励
Anthropic发布了面向成本敏感用户的Claude Haiku 4.5大语言模型,定价为每百万输入令牌1美元,输出令牌5美元,比旗舰版Sonnet 4.5便宜三倍。该模型采用混合推理架构,可根据需求调整计算资源,支持多模态输入最多20万令牌。在八项基准测试中,性能仅比Sonnet 4.5低不到10%,但在编程和数学任务上超越了前代Sonnet 4。模型响应速度比Sonnet 4快两倍以上,适用于客服聊天机器人等低延迟应用场景。
上海AI实验室联合多家顶尖机构开发出全球首个科学推理大模型SciReasoner,该模型在2060亿科学数据上训练,支持103个科学任务,能够像科学家一样进行逻辑推理并展示思考过程。它实现了化学、生物学、材料科学等多领域知识整合,在分子设计、性质预测、文献分析等方面表现出色,为科学研究提供了强大的AI助手工具。
英国初创公司Nscale将为微软建设四个AI数据中心,总计部署约20万个GPU,合同价值高达240亿美元。首个数据中心将于明年在葡萄牙开建,配备1.26万个GPU。德州数据中心规模最大,将部署10.4万个GPU,容量从240兆瓦扩展至1.2吉瓦。所有设施将采用英伟达最新Blackwell Ultra显卡。
南洋理工大学研究团队开发出SHINE方法,这是一种无需额外训练就能实现高质量图像合成的新技术。该方法通过巧妙引导现有AI模型的潜能,能够在复杂光影条件下完美合成图像,包括准确的阴影生成和水面倒影效果。研究团队还创建了ComplexCompo基准测试集,验证了SHINE在各种挑战性场景中的卓越性能,为图像编辑技术的发展开辟了新方向。