随着一些预测显示多模态人工智能市场在未来几年将以每年超过 35% 的速度增长,Google LLC 正在努力争取领先地位。
该公司的云计算部门最近表示,将文本、图像、视频、音频和其他非结构化数据与生成式 AI 处理相结合的多模态 AI,将成为 2025 年五大 AI 趋势之一。
Google 数据、分析和 AI 产品战略及对外产品管理执行官 Yasmeen Ahmad 表示,BigQuery 是 Google 多模态 AI 战略的核心,该公司正将这个数据仓库重新定位为可以收集和分析多种数据类型的数据湖仓。
她说:"在'数据湖仓'这个术语出现之前,BigQuery 就是最初的数据湖仓。我们构建了一个关系型引擎来支持企业客户想要进行的所有结构化分析。"
在接受 SiliconANGLE 采访时,Ahmad 表示,Google 估计 90% 的企业数据是非结构化的。通过将图像和语音识别等技术与结构化数据相结合进行检索增强生成训练,组织可以从以前无法使用的数据中获取洞察。
快餐连锁店 Wendy's 就是其中之一。它正在测试一个结合了 BigQuery、Google 的 Vision AI 和 Gemini 的应用程序,分析得来速服务车流量的视频以识别瓶颈。将观察到的视频图像数据与员工配置和排班信息相结合,以优化人员配置水平。Ahmad 说:"这不仅仅是视频分析,视频数据与运营数据在一个统一的平台中并存。"
United Parcel Service Inc. 构建了一个仪表板,利用卡车上安装的传感器数据,通过实时向驾驶员发出具体指令来优化实时配送路线。Bell Canada 正在使用 AI 生成的客服中心通话记录来训练一个教练助手,为客服人员提供反馈。
多模态 AI 可以使零售商从呼叫中心、社交媒体评论和移动应用反馈等多个来源收集客户情绪,并将其输入生成式 AI 引擎,以发现新的目标营销活动细分市场。Ahmad 说:"多模态数据和 AI 的这种组合实现了以前无法达到的个性化和可扩展性水平。"
Gemini 可以直接在 BigQuery 的数据基础上运行,无需数据传输。这加快了应用程序开发速度。Ahmad 表示,许多组织现在能够在几周内推出试点项目。
由于组织对向客户开放生成式 AI 持谨慎态度,大多数早期应用都是内部使用。但在防火墙后面仍有大量机会,Ahmad 说:"最容易实现的是那些客户长期收集了大量数据但一直无法利用的场景。有了 BigQuery 的多模态数据基础、Vision AI 和 Gemini 的集成,很容易就能实现应用。"
好文章,需要你的鼓励
印度理工学院研究团队从大脑神经科学的戴尔定律出发,开发了基于几何布朗运动的全新AI图像生成技术。该方法使用乘性更新规则替代传统加性方法,使AI训练过程更符合生物学习原理,权重分布呈现对数正态特征。研究团队创建了乘性分数匹配理论框架,在标准数据集上验证了方法的有效性,为生物学启发的AI技术发展开辟了新方向。
英伟达和诺基亚宣布战略合作,将英伟达AI驱动的无线接入网产品集成到诺基亚RAN产品组合中,助力运营商在英伟达平台上部署AI原生5G Advanced和6G网络。双方将推出AI-RAN系统,提升网络性能和效率,为生成式AI和智能体AI应用提供无缝体验。英伟达将投资10亿美元并推出6G就绪的ARC-Pro计算平台,试验预计2026年开始。
Sony AI开发出SoundReactor框架,首次实现逐帧在线视频转音频生成,无需预知未来画面即可实时生成高质量立体声音效。该技术采用因果解码器和扩散头设计,在游戏视频测试中表现出色,延迟仅26.3毫秒,为实时内容创作、游戏世界生成和互动应用开辟新可能。