Galileo Technologies Inc.(一家专门开发 AI 模型观察和评估工具的公司)今天推出了 Agentic Evaluations 平台,该平台旨在评估由大语言模型驱动的 AI 代理系统的性能。
该公司表示,他们正在解决代理系统带来的额外复杂性问题。这些软件机器人具备决策能力,能够在几乎不需要人工监督的情况下,跨多个步骤进行规划、推理和执行任务,并能适应不断变化的环境和场景。
由于代理系统的行为具有情境依赖性,开发人员往往难以理解故障发生的时间和原因。但这并未影响人们对这项技术在提升工作流程效率方面的兴趣。Gartner Inc. 预测,到 2028 年,33% 的企业软件应用将包含代理式 AI,而 2024 年这一比例还不到 1%。
代理系统以新的方式挑战着现有的开发和测试技术。首先,它们可以针对用户请求选择多个动作序列,这使其行为难以预测。复杂的代理工作流程难以建模,需要更复杂的评估方法。代理系统可能会使用多个大语言模型,这使得性能和成本更难确定。随着工作流程的规模和复杂性增加,错误风险也会增大。
Galileo 表示,其 Agentic Evaluations 为系统级和逐步评估提供了完整的生命周期框架。它让开发人员可以查看整个多步骤代理过程,从输入到完成的全过程,通过追踪和简单的可视化展示,帮助开发人员快速定位效率低下和错误之处。该平台使用一套专有的"LLM-as-a-Judge"指标(一种使用大语言模型来检查和评判任务的评估技术),专门服务于构建代理系统的开发人员。
评估指标包括对大语言模型规划器是否选择了正确的工具和参数的评估、对单个工具错误的评估、反映最终目标进展的追踪,以及最终行动与代理系统原始指令的一致性。根据公司博客文章显示,这些指标的准确率在 93% 到 97% 之间。
平台使用专有的、基于研究的指标在多个层面测量性能。开发人员可以选择参与规划的大语言模型,并评估单个任务中的错误。
跨会话和时间段的成本、延迟和错误的聚合跟踪有助于成本和延迟测量。警报和仪表板有助于识别系统性问题,以实现持续改进,例如工具调用失败或行动与指令之间的不一致。该平台支持流行的开源 AI 框架 LangGraph 和 CrewAI。
Agentic Evaluations 现已向所有 Galileo 用户开放。该公司已筹集 6800 万美元资金,包括去年十月的 4500 万美元融资轮。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。