随着生成式人工智能浪潮的持续推进,许多企业仍在探索如何最大化利用生成式 AI 背后的大语言模型。一个重要的困境是:是选择需要许可证且使用受严格规则限制的专有大语言模型,还是选择企业可以自由定制的开源模型。
总部位于旧金山的 Pipeshift 认为,考虑到开源模型所提供的自由度和控制权,越来越多的公司会选择后者 - 但前提是他们能找到快速有效地在业务中部署开源大语言模型的方法。该初创公司今天将宣布获得 250 万美元种子轮融资,用于推出一个基础设施平台,该平台声称可以让企业更轻松地实现这一目标。
Pipeshift 联合创始人兼 CEO Arko Chattopadhyay 表示:"我们认为 2025 年将是生成式 AI 迈向生产环境的一年,工程团队将见证在内部使用开源模型的优势。这不仅提供了高度的隐私和控制,还带来了更好的性能和更低的成本 - 但这也是一个复杂且昂贵的过程,需要企业将多个组件整合在一起。"
许多企业缺乏进行这项工作所需的资源 - 时间、资金和专业知识。Pipeshift 的核心理念是提供一个一站式的编排平台。它提供预构建的功能,使企业能够在其业务中训练、部署和扩展开源大语言模型,这样就不需要大量工程师花费数周甚至数月时间来完成通常所需的繁重工作。
Chattopadhyay 认为,这种方法不仅提供便利,还提供灵活性。"我们正处在生成式 AI 可能长达 10 年的发展周期的第二年,那么在这个阶段为什么要将自己局限于单一的大语言模型呢?"他说,"我们的平台让更换模型或根据需要组合大语言模型变得更加容易。"
Chattopadhyay 与他的联合创始人 Enrique Ferrao 和 Pranav Reddy 相识于本科时期,当时三人正在从事一个得到 Nvidia、Dassault Systems 和 SICK Sensor Intelligence 支持的国防机器人项目。三人去年创立了 Pipeshift,最初与约 30 个测试版客户合作。随着 Pipeshift 继续商业化发展,其中约五分之一的客户已经升级成为正式客户。
在这些客户中,NetApp 的软件工程总监 Anu Mangaly 指出了该平台的实用性和成本效益。她说:"Pipeshift 编排现有 GPU 的能力令人印象深刻,让企业能够降低生产环境中的计算资源占用和成本,同时提供增强的用户体验,既私密又安全。"
Pipeshift 的投资者也对公司的潜力充满信心。今天的融资由 Y Combinator 和 SenseAI Ventures 领投,Arka Venture Labs、Good News Ventures、Nivesha Ventures、Astir VC、GradCapital 和 MyAsiaVC 参投。本轮融资还吸引了科技行业的多位知名天使投资人。
SenseAI Ventures 的管理合伙人 Rahul Agarwalla 表示:"企业更倾向于选择开源生成式 AI,因为它能带来隐私、模型所有权和更低成本等优势,但将生成式 AI 转移到生产环境仍然是一个复杂且昂贵的过程,需要整合多个组件。Pipeshift 的企业级编排平台通过简化部署并最大化生产吞吐量,消除了如此大规模工程投资的需求。"
Pipeshift 将利用筹集的资金完善平台 - Chattopadhyay 有信心在未来几个月完成升级,尽管他表示该平台已经大大缩短了部署时间 - 并提升企业知名度。"我们认为我们可以让这些开源模型变得更容易获取,但企业领导者需要了解什么是可能的,而不是简单地接受现有客户代表想要销售给他们的模型。"
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。