今天早些时候,Microsoft Xbox 部门的负责人发布了 Muse,这是一个旨在为游戏创建视觉效果和玩法的生成式 AI 模型。
这个在忍者理论工作室 (Ninja Theory) 已被大众遗忘的多人游戏《Bleeding Edge》基础上训练的模型,对 Microsoft Xbox 部门来说并非意外之举。从 CEO Satya Nadella 开始,整个公司都全面拥抱生成式 AI 技术。Xbox 部门跟进这一趋势只是时间问题。
然而,根据最新的游戏行业状况报告中对 1500 名开发者的调查显示,30% 的开发者对生成式 AI 持负面态度。不论生成式 AI 是否会长期存在,游戏开发者们似乎越来越抵制用生成式 AI 取代创意构思过程。
但 Microsoft 并非孤军奋战。Capcom 最近也提到在游戏开发的构思阶段使用生成式 AI,认为可以通过自动化处理游戏开发中成千上万的小决策,从而减少繁琐工作,让开发者将精力集中在创意上。值得注意的是,像 Muse 这样的模型,虽然吸收了数百小时人工创作的游戏内容,但仍然需要人来提供创意基础。
这也引发了一个问题:Microsoft 现在是否应该在意开发者的想法?作为平台持有者和可能是业内最大的第三方发行商,在未来几年里,应对现代设计的复杂性并试图像 Capcom 一样使其更经济高效可能至关重要。举例来说,Xbox Game Studio 的最新《Fable》项目据称从 2018 年就开始开发,但至今仍未宣布发布日期。
生成式 AI 能否解决这个问题或加快进度?这还是未知数。但游戏开发周期越来越长,这种状况对 Xbox 负责人 Phil Spencer 来说并非长久之计。
对 Xbox 而言,"保护"是他们推广 Muse 的关键论点。Microsoft 游戏 AI 部门副总裁 Fatima Kardar 在初始声明中表示,Muse 可以让老游戏不受硬件进步的限制,轻松适配现代观众。按照 Kardar 的说法,这将使重制版和向下兼容工程的机会成本变得无关紧要。但 Xbox 今天展示的 Muse 相关内容并未证实这一点。
通过如此大规模地公开推广 Muse,Xbox 似乎试图同时服务于股东和未来主义者两方。这本无可厚非,但重要的是要记住,Muse 是通过训练剑桥工作室开发的、未能引起观众共鸣的游戏的数百小时内容而成。如果等式中的所有要素都不尽如人意,最终产品又怎能不是一种妥协?
好文章,需要你的鼓励
苏黎世大学的实验显示,AI的说服成功率达到9-18%,而人类平均只有2.7%,AI比人类强6倍。在4个月内,13个AI账号成功说服了上百位Reddit用户改变观点,且没有人识破它们的身份
韩国科学技术院研究团队提出"分叉-合并解码"方法,无需额外训练即可改善音视频大语言模型的多模态理解能力。通过先独立处理音频和视频(分叉阶段),再融合结果(合并阶段),该方法有效缓解了模型过度依赖单一模态的问题,在AVQA、MUSIC-AVQA和AVHBench三个基准测试中均取得显著性能提升,特别是在需要平衡音视频理解的任务上表现突出。
Roig Arena 将于 2025 年 9 月在瓦伦西亚开业,借助 Extreme Networks 的 6GHz Wi-Fi 与数据分析技术,实现无缝运营与个性化观众体验,打造全天候活动中心。
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。