今天早些时候,Microsoft Xbox 部门的负责人发布了 Muse,这是一个旨在为游戏创建视觉效果和玩法的生成式 AI 模型。
这个在忍者理论工作室 (Ninja Theory) 已被大众遗忘的多人游戏《Bleeding Edge》基础上训练的模型,对 Microsoft Xbox 部门来说并非意外之举。从 CEO Satya Nadella 开始,整个公司都全面拥抱生成式 AI 技术。Xbox 部门跟进这一趋势只是时间问题。
然而,根据最新的游戏行业状况报告中对 1500 名开发者的调查显示,30% 的开发者对生成式 AI 持负面态度。不论生成式 AI 是否会长期存在,游戏开发者们似乎越来越抵制用生成式 AI 取代创意构思过程。
但 Microsoft 并非孤军奋战。Capcom 最近也提到在游戏开发的构思阶段使用生成式 AI,认为可以通过自动化处理游戏开发中成千上万的小决策,从而减少繁琐工作,让开发者将精力集中在创意上。值得注意的是,像 Muse 这样的模型,虽然吸收了数百小时人工创作的游戏内容,但仍然需要人来提供创意基础。
这也引发了一个问题:Microsoft 现在是否应该在意开发者的想法?作为平台持有者和可能是业内最大的第三方发行商,在未来几年里,应对现代设计的复杂性并试图像 Capcom 一样使其更经济高效可能至关重要。举例来说,Xbox Game Studio 的最新《Fable》项目据称从 2018 年就开始开发,但至今仍未宣布发布日期。
生成式 AI 能否解决这个问题或加快进度?这还是未知数。但游戏开发周期越来越长,这种状况对 Xbox 负责人 Phil Spencer 来说并非长久之计。
对 Xbox 而言,"保护"是他们推广 Muse 的关键论点。Microsoft 游戏 AI 部门副总裁 Fatima Kardar 在初始声明中表示,Muse 可以让老游戏不受硬件进步的限制,轻松适配现代观众。按照 Kardar 的说法,这将使重制版和向下兼容工程的机会成本变得无关紧要。但 Xbox 今天展示的 Muse 相关内容并未证实这一点。
通过如此大规模地公开推广 Muse,Xbox 似乎试图同时服务于股东和未来主义者两方。这本无可厚非,但重要的是要记住,Muse 是通过训练剑桥工作室开发的、未能引起观众共鸣的游戏的数百小时内容而成。如果等式中的所有要素都不尽如人意,最终产品又怎能不是一种妥协?
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。