根据联想委托的一项调研显示,尽管 AI 行业投入巨资进行技术开发并急需收回成本,但许多企业领导人仍然对 AI 是否值得投资持怀疑态度。
这项调研访问了近 3,000 名企业高管和 IT 高层决策者,证实量化 AI 的投资回报率仍是阻碍其推广应用的最大障碍之一。
这凸显出一个明显的矛盾:微软、谷歌等公司在 AI 领域投入的资金不断增加,但决策者对这项技术的价值普遍存疑,其中 37% 的受访者表示对签署采购协议持保留态度。
这份名为《AI 经济学的时代》的报告基于 IDC 对全球 2,920 名高管和 IT 决策者的调查,涵盖了从大型企业到拥有约 250 名员工的小型组织在内的各个行业。
联想表示,大多数 AI 应用案例都达到了业务预期,但证明投资回报仍然具有挑战性,受访者普遍提到财务风险和不确定性。
据称,早期成功主要体现在 IT 运营、软件开发和市场营销领域,26% 的采用者表示其组织实施的 AI 项目超出预期,另有 68% 表示达到预期。
然而,报告也显示只有 5% 的受访者在企业范围内采用了 AI,另有 25% 正在进行试点项目,21% 表示仍处于早期阶段。
近半数受访者尚未采用 AI,其中 36% 表示计划在未来 12 个月内开始使用,另有 13% 仍在考虑或评估阶段,尚无具体计划。
报告还指出,概念验证项目 (POC) 数量众多,但转化为生产的比率较低,表明"组织在数据、流程和 IT 基础设施方面的准备程度不足"。
不过联想预计,未来 12 个月内 AI 计划的支出将"近乎翻三倍",主要投资于数据科学、商业智能以及 IT 咨询和服务。
受访的 IT 领导者预计,到 2025 年 AI 将占技术预算的近 20%,这对于一项许多人尚不确定的技术来说似乎比例很高。联想表示,这主要由生成式 AI 应用案例的加速采用推动,相比解释性 AI 和预测性 AI 系统而言。
解释性 AI 旨在为决策提供解释,主要应用于医疗、金融和法律等行业,而预测性 AI 则在 IT 运营等市场找到立足点。
正如 The Register 此前指出的,AI 持续需要高额投资使许多股东感到担忧。去年的一项调查显示,从概念验证转入生产的 AI 项目数量实际上有所下降,显示显著投资回报的项目比例也有所下滑。
上个月,Gartner 的一份报告表明,企业对 AI 的幻灭感正在增长,该公司杰出分析师 John-David Lovelock 表示:"我们对生成式 AI 能做什么和将要做什么的期望开始降低。"
尽管如此,供应商仍在大力推进 AI 发展。微软上月表示今年将投资 800 亿美元用于训练和部署 AI 模型的基础设施,Meta 计划投入超过 600 亿美元用于更多 AI 资源,而 Stargate 项目的支持者声称准备在未来四年投入高达 5,000 亿美元。
所有这些投资都需要从某处收回成本,而这个"某处"就是客户,即使像微软这样的供应商需要花时间"向客户展示并帮助他们认识到价值"。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。