DataRobot Inc. 是一家为专业人士和新手提供人工智能和机器学习模型开发工具的公司。该公司今天宣布收购了总部位于多伦多的初创公司 Agnostiq Inc.。
此次收购将使 DataRobot 能够通过提供增强其计算编排和优化能力的工具,来促进和扩展所谓的 AI 代理的开发。
DataRobot 开发的 AI 开发平台旨在作为公司 AI 计划的中枢,并为创建机器学习应用程序所涉及的所有关键编码和软件部署任务提供工具。DataRobot 的与众不同之处在于它同时面向数据科学家和业务用户。对于后者,它提供了一个简单的点击式 AI 构建器,使他们无需编码即可创建 AI 模型。
其工作原理是评估用户希望通过 AI 自动化的任务,然后从预封装算法库中搜索最合适的神经网络。选定的神经网络随后会被训练来执行该任务,每个步骤都是完全自动化的。
对于更高级的用户(如专业数据科学家),DataRobot 提供了用于创建和定制神经网络的工具。用户可以首先使用其无代码 AI 构建器生成神经网络,然后通过添加自己的代码来根据需求进行定制。公司承诺这种方法比从头开始构建要快得多。
DataRobot 认为其平台也非常适合开发 AI 代理,这是一种更高级的 AI 形式,可以代表用户执行各种任务,只需最少的人工输入或监督。AI 代理具有很大的潜力,但 DataRobot 担心许多公司在分散的工具和环境中难以管理这些应用程序,导致效率低下,阻碍创新。然而,通过让公司能够跨多个基础设施和计算环境部署智能 AI,并能够根据可用性、成本和性能动态管理这些资源,这个问题可以得到解决。
这就是 Agnostiq 发挥作用的地方。它开发了一个名为 Covalent 的 AI 基础设施管理和计算编排平台。通过利用动态资源分配,在最合适的基础设施上部署,从而提高效率,使 AI 部署更容易扩展。
通过将 DataRobot 与 Covalent 集成,该公司表示可以实现异构计算编排,使 AI 代理能够在任何计算环境中部署、扩展和管理,包括云端、本地或混合部署。在其提供的功能中,它帮助客户动态分配和突发资源,使底层基础设施能够以最佳价格性能比进行扩展。
此外,Covalent 平台可以帮助减少与底层基础设施相关的复杂性,例如通过单一平台简化 AI 工具,而无需产生迁移成本。
DataRobot 首席执行官 Debanjan Saha 表示,尽管企业争相部署智能 AI 工作负载,但许多企业都受到支持这些应用程序的孤立基础设施和工具的制约。
他说:"这种运营复杂性对业务来说既不可持续也不可扩展。通过此次收购,我们正在赋能 AI 团队智能且经济高效地开发、交付和管理任何计算环境中的智能 AI。"
好文章,需要你的鼓励
这项来自苹果公司的研究揭示了视频大语言模型评测的两大关键问题:许多测试问题不看视频就能回答正确,且打乱视频帧顺序后模型表现几乎不变。研究提出VBenchComp框架,将视频问题分为四类:语言模型可回答型、语义型、时序型和其他类型,发现在主流评测中高达70%的问题实际上未测试真正的视频理解能力。通过重新评估现有模型,研究团队证明单一总分可能掩盖关键能力差距,并提出了更高效的评测方法,为未来视频AI评测提供了新方向。
这篇来自KAIST AI研究团队的论文提出了"差分信息分布"(DID)这一创新概念,为理解直接偏好优化(DPO)提供全新视角。研究证明,当偏好数据编码了从参考策略到目标策略所需的差分信息时,DPO中的对数比率奖励形式是唯一最优的。通过分析DID熵,研究解释了对数似然位移现象,并发现高熵DID有利于通用指令跟随,而低熵DID适合知识密集型问答。这一框架统一了对DPO目标、偏好数据结构和策略行为的理解,为语言模型对齐提供理论支持。
VidText是一个全新的视频文本理解基准,解决了现有评估体系的关键缺口。它涵盖多种现实场景和多语言内容,提出三层评估框架(视频级、片段级、实例级),并配对感知与推理任务。对18个先进多模态模型的测试显示,即使最佳表现的Gemini 1.5 Pro也仅达46.8%平均分,远低于人类水平。研究揭示输入分辨率、OCR能力等内在因素和辅助信息、思维链推理等外部因素对性能有显著影响,为未来视频文本理解研究提供了方向。
ZeroGUI是一项突破性研究,实现了零人工成本下的GUI代理自动化在线学习。由上海人工智能实验室和清华大学等机构联合开发,这一框架利用视觉-语言模型自动生成训练任务并提供奖励反馈,使AI助手能够自主学习操作各种图形界面。通过两阶段强化学习策略,ZeroGUI显著提升了代理性能,在OSWorld环境中使UI-TARS和Aguvis模型分别获得14%和63%的相对改进。该研究彻底消除了传统方法对昂贵人工标注的依赖,为GUI代理技术的大规模应用铺平了道路。