如今,几乎所有前沿的 AI 产品和模型都采用 Transformer 架构。像 GPT-4、LLaMA、Gemini 和 Claude 等大语言模型都基于 Transformer,其他 AI 应用如文本转语音、自动语音识别、图像生成和文本转视频模型的底层技术也都是 Transformer。
随着 AI 热潮持续升温,是时候深入了解 Transformer 了。本文将解释它的工作原理、为什么对可扩展解决方案的发展如此重要,以及为什么它是大语言模型的支柱。
Transformer 不只是表面那么简单
简而言之,Transformer 是一种专门用于建模数据序列的神经网络架构,非常适合语言翻译、句子补全、自动语音识别等任务。Transformer 之所以成为序列建模任务的主导架构,是因为其底层的注意力机制可以轻松实现并行化,从而在训练和推理时实现大规模扩展。
Transformer 最初由 Google 研究人员在 2017 年的论文《Attention Is All You Need》中提出,作为一种专门用于语言翻译的编码器-解码器架构。次年,Google 发布了双向编码器表示 (BERT),这可以被视为最早的大语言模型之一——尽管按今天的标准来看规模较小。
自那时起——特别是在 OpenAI 的 GPT 模型问世后——训练更大模型的趋势加速发展,使用更多数据、更多参数和更长的上下文窗口。
为推动这一发展,出现了许多创新:更先进的 GPU 硬件和更好的多 GPU 训练软件;量化和专家混合 (MoE) 等降低内存消耗的技术;Shampoo 和 AdamW 等新型训练优化器;FlashAttention 和 KV Caching 等高效计算注意力的技术。这种趋势很可能在可预见的未来继续下去。
Transformer 中自注意力机制的重要性
根据应用场景的不同,Transformer 模型采用编码器-解码器架构。编码器组件学习数据的向量表示,可用于分类和情感分析等下游任务。解码器组件接收文本或图像的向量或潜在表示,用于生成新文本,适用于句子补全和摘要等任务。因此,许多熟知的最先进模型,如 GPT 系列,都只使用解码器。
编码器-解码器模型结合了这两个组件,使其适用于翻译和其他序列到序列的任务。对于编码器和解码器架构而言,核心组件是注意力层,因为它允许模型保留文本中较早出现的词语的上下文。
注意力机制有两种:自注意力和交叉注意力。自注意力用于捕捉同一序列中词语之间的关系,而交叉注意力用于捕捉两个不同序列之间词语的关系。交叉注意力在模型中连接编码器和解码器组件,在翻译过程中,例如,它允许英语单词"strawberry"与法语单词"fraise"建立联系。从数学角度看,自注意力和交叉注意力都是矩阵乘法的不同形式,可以通过 GPU 高效完成。
由于注意力层的存在,Transformer 可以更好地捕捉相距较远的词语之间的关系,而之前的模型如循环神经网络 (RNN) 和长短期记忆 (LSTM) 模型则会丢失文本前面的词语上下文。
模型的未来发展
目前,Transformer 是许多需要大语言模型的用例的主导架构,并且受益于最多的研究和开发。虽然这种情况短期内似乎不会改变,但最近一类引起关注的不同模型是状态空间模型 (SSMs),如 Mamba。这种高效算法可以处理非常长的数据序列,而 Transformer 则受限于上下文窗口。
对我来说,Transformer 模型最令人兴奋的应用是多模态模型。例如,OpenAI 的 GPT-4 能够处理文本、音频和图像,其他提供商也开始跟进。多模态应用非常多样化,涵盖视频字幕、声音克隆、图像分割等领域。它们还为残障人士提供了使 AI 更易接触的机会。例如,视障人士可以通过多模态应用的语音和音频组件进行交互。
这是一个充满机遇的领域,有望发现新的用例。但请记住,至少在可预见的未来,这些应用主要还是基于 Transformer 架构。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。