Snowflake 与 Anthropic 宣布达成重要合作伙伴关系,将 AI 代理直接嵌入企业数据环境中,使企业能够在严格的安全控制下分析海量信息。
两家公司将把 Anthropic 的 Claude 3.5 Sonnet 模型整合到 Snowflake 的新型 Cortex Agents 平台中,让组织能够在现有安全框架内部署 AI 系统,以分析结构化数据库信息和非结构化文档内容。
Snowflake 的 AI 负责人 Baris Gultekin 在媒体圆桌会议上表示:"我们相信 AI 代理很快将成为企业工作中不可或缺的一部分。它们将提升客户支持分析和工程等团队的生产力,让员工有更多时间专注于更高价值的工作。"
Snowflake 借助 Anthropic 的 Claude 3.5 增强 AI 能力
该合作解决了企业 AI 应用的一个关键挑战 — 安全地大规模部署强大的 AI 模型。Claude 将完全在 Snowflake 的安全边界内运行,消除了向外部 AI 服务发送敏感数据的顾虑。
Anthropic 的首席产品官 Mike Krieger 在新闻发布会上表示:"在 Snowflake 的安全边界内运行 Claude,让客户能够在数据受控的情况下构建和部署 AI 应用。"
早期结果显示前景可期。Snowflake 报告称,在内部基准测试中,复杂文本转 SQL 任务的准确率达到 90%,显著优于以往方法。西门子能源已经建立了一个 AI 聊天机器人,可分析超过 50 万页的内部文档,而日产北美在分析经销商体验的客户情绪时达到了 97% 的准确率。
Snowflake 如何使用 AI 实现业务数据分析自动化
Cortex Agents 可以跨结构化数据库和非结构化内容编排复杂的数据任务。该系统包含两个关键组件:将自然语言转换为准确数据库查询的 Cortex Analyst,以及 Snowflake 声称在标准基准测试中至少领先竞争对手 11% 的混合搜索系统 Cortex Search。
Snowflake 的产品执行副总裁 Christian Kleinerman 表示:"让 Snowflake 客户能够使用如此先进的模型有助于提升使用体验。无需考虑使用哪个模型,需要多少提示才能让系统按照我想要的方式运行或回答我需要的问题...这是非常棒的。"
Snowflake 的 Cortex Agents 承诺更智能、更快速的企业 AI
这次合作标志着企业 AI 战略的转变。企业现在寻求将 AI 直接整合到现有数据基础设施中,而不是将其视为独立的技术。
"没有人只是在寻找一个将输入 token 转换为输出 token 的供应商,"Krieger 解释道。"他们在寻找能够帮助他们制定 AI 战略的合作伙伴,这种战略要与他们的价值观一致,而且他们相信这个合作伙伴能够保持在技术前沿。"
该平台包括全面的监控功能,并维持现有的访问控制和合规要求 — 这些特性在 AI 监管不断发展的情况下至关重要。
Kleinerman 在发布会上指出:"一定程度的监管明确性会有帮助。但我认为这取决于我们所有人,特别是那些深入了解细节的研究实验室,我们要参与帮助制定这些监管规则。"
为何 Snowflake 的 AI 战略关注安全和治理
这次合作为技术决策者提供了一条在保持安全和治理的同时大规模部署 AI 的潜在途径。成功与否可能取决于谨慎的实施和能够带来可衡量业务价值的明确用例。
对于正在应对日益增长的数据量和复杂性的企业来说,安全有效地部署 AI 的能力可能成为关键的竞争优势。该平台将先进的 AI 能力与强大的安全控制相结合,预示着智能代理将成为企业运营不可分割的一部分。
好文章,需要你的鼓励
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
阿里达摩院联合浙江大学推出VideoRefer套件,这是首个能够精确理解视频中特定物体的AI系统。该系统不仅能识别整体场景,更能针对用户指定的任何物体进行详细分析和跨时间追踪。研究团队构建了包含70万样本的高质量数据集VideoRefer-700K,并设计了全面的评估体系VideoRefer-Bench。实验显示该技术在专业视频理解任务中显著超越现有方法,在安防监控、自动驾驶、视频编辑等领域具有广阔应用前景。
OpenAI推出新AI模型GPT-5-Codex,能够在无用户协助下完成数小时的编程任务。该模型是GPT-5的改进版本,使用额外编码数据训练。测试显示,GPT-5-Codex可独立工作超过7小时,能自动发现并修复编码错误。在重构基准测试中得分51.3%,比GPT高出17%以上。模型可根据任务难度调整处理时间,简单请求处理速度显著提升。目前已在ChatGPT付费计划中提供。
Sa2VA是由UC默塞德等高校联合开发的突破性AI系统,首次实现图像视频的统一理解与精确分割。通过巧妙融合SAM-2视频分割技术和LLaVA多模态对话能力,Sa2VA能够同时进行自然对话和像素级物体标注。研究团队还构建了包含7万多个复杂视频表达式的Ref-SAV数据集,显著提升了AI在长文本描述和复杂场景下的表现。实验显示,Sa2VA在多个基准测试中达到业界领先水平,为视频编辑、医疗诊断、智能监控等领域带来新的应用可能性。