上个月,DeepSeek 通过发布一个新的、具有竞争力的模拟推理模型,在 AI 领域掀起了轩然大波。该模型可以在 MIT 许可证下免费下载和使用。现在,该公司正准备让这个模型背后的底层代码更加透明,承诺从下周开始发布五个开源代码库。
在周四晚间的社交媒体帖子中,DeepSeek 表示,其计划的"开源周"每日发布将提供对"这些在我们在线服务中的基础模块的可见性,它们已经过文档记录、部署和生产环境的实战测试。作为开源社区的一份子,我们相信每一行共享的代码都将成为推动我们共同前进的动力。"
虽然 DeepSeek 对将要分享的代码类型并未具体说明,但其配套的 GitHub 页面 "DeepSeek Open Infra" 承诺即将发布的内容将涵盖"推动我们这个小小月球计划前进的代码",并"完全透明地分享我们微小但真诚的进展"。该页面还引用了一份 2024 年的论文,详细介绍了 DeepSeek 的训练架构和软件栈。
这一举措可能会加大 DeepSeek 与 OpenAI 之间的差异,后者的市场领先产品 ChatGPT 模型仍然完全专有,其内部运作对外部用户和研究人员来说依然不透明。尽管 DeepSeek 的移动应用因隐私问题面临国际限制,但这次开源发布可能有助于提供更广泛和更便捷的访问途径。
开放究竟有多开放?
DeepSeek 最初的模型发布已经包含了所谓的"开放权重"访问权限,可以访问代表模型数十亿模拟神经元之间连接强度的底层数据。这种发布方式允许终端用户通过额外的训练数据轻松微调这些模型参数,以满足更具针对性的目的。
包括 Google 的 Gemma、Meta 的 Llama,甚至 OpenAI 早期发布的 GPT2 等主要模型都采用了这种开放权重结构。这些模型通常也会发布开源代码,涵盖响应查询时运行的推理时间指令。
目前尚不清楚 DeepSeek 计划的开源发布是否也将包括团队在训练模型时使用的代码。这种训练代码对于满足开源研究所 (OSI) 去年最终确定的"开源 AI"正式定义来说是必需的。根据 OSI 的标准,一个真正开放的 AI 还必须包括"关于用于训练系统的数据的充分详细信息,使得技术熟练的人能够构建一个实质上等效的系统"。
完全开源发布(包括训练代码)可以让研究人员更清楚地了解模型在核心层面是如何工作的,可能揭示出模型架构而非参数权重固有的偏见或局限性。完整的源代码发布还可以让人们更容易从头开始复制模型,如有必要,甚至可以使用全新的训练数据。
Elon Musk 的 xAI 在今年 3 月发布了 Grok 1 的开源推理时间代码版本,最近还承诺在未来几周内发布 Grok 2 的开源版本。但该公司表示,最近发布的 Grok 3 将暂时保持专有状态,仅供 X Premium 订阅用户使用。
本月早些时候,HuggingFace 在 OpenAI 发布专有的 "Deep Research" 功能几小时后就发布了其开源克隆版本。HuggingFace 的 Aymeric Roucher 告诉 Ars Technica,该克隆版本在发布时使用闭源权重模型"仅仅是因为它运行良好",但源代码的"开放管道"可以根据需要轻松切换到任何开放权重模型。
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。