在内心深处,我们都知道应该直面困难而不是规避它们。正如约翰·亚当斯所说:"每个问题都是机遇的伪装。"
因此,最大的挑战往往带来最大的机遇。让我们来探讨所有商业困境中最重要的一个:如何优化组织的最大规模运营。
在日常活动中,公司面临着数百万个"做也不是,不做也不是"的运营决策,例如:
其实这是可以解决的。这里有一个鲜为人知的重要发现:只需要简单的算术就能优化任何此类决策:计算两个选项的负面影响,然后选择更好的那个。
以上表中的第一行为例:决定是否授权交易或将其作为潜在欺诈而阻止。
首先,计算选择左栏行动的负面影响 - 即"做了会后悔"的平均损失:
左栏行动的负面影响 = 你判断错误的概率 × 潜在成本
例如:如果你有 95% 的把握认为支付不是欺诈 (即合法),而我们知道给合法持卡人带来不便平均会让你损失 0 - 因为他们可能会停止使用你发行的卡 - 那么拒绝购买的负面影响是 95% × 0,即 。
其次,计算右栏行动的负面影响 (在某些情况下是不作为) - 即"不做会后悔"的平均损失 - 使用相同的公式:
右栏行动的负面影响 = 你判断错误的概率 × 潜在成本
例如:如果支付有 95% 的概率是合法的,那就有 5% 的概率是欺诈。如果这是一笔 0 的购买,作为银行,如果是欺诈而你没有阻止,你将承担全部责任。所以负面影响是 5% × 0,即 。
第三,选择负面影响较小的行动。两个选项都有负面影响,但有一个明显的赢家。如果我们拒绝交易,预计平均损失 。但如果我们不拒绝,预计损失 。数学告诉我们,当我们对一笔 0 交易的有效性有 95% 的信心时,我们应该批准它。
困难之处:计算概率
谁能想到呢?一个基于每个错误决策潜在金钱损失的简单数学计算 - 即左栏行动的假阳性成本和右栏行动的假阴性成本 - 就能做出数百万个最优决策,每个决策都基于其自身的成本效益分析。
那么,如果数学这么简单,为什么它不是普遍存在,一直驱动着每个运营呢?毕竟,许多公司已经成功部署了这种方法 - 但我认为它远没有达到可能的普及程度。
原因在这里。公式中的另一个部分 - 每种情况下你判断对错的概率 - 是瓶颈。这是"神奇配方"。如果你有它,那就很好,但这需要一些工作。
具体来说,我们需要一个"概率计算器",输入案例的具体情况,输出事情往左或往右发展的概率 - 欺诈或合法、治愈或恶化、成交或未成交等。
别担心 - 已经有一个成熟的解决方案,这种技术通过学习先前案例的结果来计算每个新案例的概率。这种技术叫做机器学习。当用于驱动这类运营决策时,它被称为预测型 AI 或预测分析。
惊喜!原来你一直在读一篇关于 AI 的文章 - 但这篇文章是从 AI 的价值主张而不是品牌开始的。在理想世界中,预测型 AI 改进运营的目的和价值应该是常识。但在这个世界中,AI 被宽泛、抽象地品牌化,首先宣称的是一个包治百病的品质 - "智能" - 而不是上述总结的具体、价值驱动的目的,你可能直到现在才意识到这篇文章是关于 AI 的。
最后的挑战:优化总价值
在开始使用预测型 AI 之前,这里有个警告:如果不注入宏观视角,你的优化项目可能会失败。机器学习的数字运算在微观层面进行,而不是宏观层面。它提供了驱动每个单独决策所需的"概率计算器"。但你不能在没有衡量和调整其整体表现的情况下启动决策系统。这一步通常被忽略 - 结果是大多数预测型 AI 项目都失败了。
这就需要 ML 估值,这是一种新兴实践,它通过对总货币价值的现实检验来增强典型的预测型 AI 生命周期。ML 估值提供了预测型 AI 系统在多个决策中预期带来的总价值的可见性 - 用利润和节省等业务指标来衡量。
通过估算系统将带来的业务价值,可以 1) 引导其开发实现最大价值,2) 在必须权衡的地方取得明智的平衡 (例如在金钱底线和不便的"做了会后悔"的持卡人数量之间),3) 为你的决策者提供一个明确的金钱动机来授权系统的部署。
通过关注具体的运营价值 - 而不是采用传统的 AI 销售策略,承诺"智能"这个模糊且经常夸大的概念 - 你可以应对组织最大的运营挑战。正如联合利华全球数据与分析副总裁 Morgan Vawter 在我的书《The AI Playbook》前言中所说:"机器学习的实际部署代表着人类进步的前沿:用科学改进运营。"
好文章,需要你的鼓励
Canva最新推出的Dream Lab是一款AI驱动的文本到图像生成器,能够快速创建数字情绪板。它集成在Canva生态系统中,为创意人员、小企业主和艺术爱好者提供了便捷的设计工具。Dream Lab可以根据文字描述生成图像,并轻松组合成情绪板,激发创意灵感。
Myriota 公司成功进入沙特阿拉伯通信、航天和技术委员会的新兴技术监管沙盒项目,将其卫星物联网连接服务扩展至中东地区。该项目旨在促进监管成熟度、加速数字化转型,并支持创新解决方案。卫星物联网市场预计将快速增长,Myriota 的网络专为物联网行业设计,支持农业、物流等领域的应用。
Versa 推出了 Sovereign SASE 解决方案,允许企业在自有基础设施上部署定制的网络和安全服务。该方案旨在应对日益严格的数据隐私法规和安全威胁,为高度管控行业提供更大的自主权和数据保护。Versa 预计这将使 SASE 市场扩大 25-30%,并开启新的应用场景。
IOWN 项目成功将全光网络应用于 5G 基站的移动前传,实现了动态路由重定向。这项技术可以根据流量需求灵活调整分布式单元 (DU) 的使用,从而降低基站功耗,提高网络可靠性。测试结果显示,动态路由切换耗时不到 8 分钟,对用户流量影响有限,可减少约 20% 的功耗。