3月17日,傅利叶正式开源全尺寸人形机器人数据集Fourier ActionNet,并发布全球首个全流程工具链。首批上线超3万条高质量真机训练数据,包含多种自由度灵巧手的训练数据及专门针对手部任务的模仿学习数据,面向全球开发者及科研机构开源共享,提供从数据采集、训练、部署的一站式解决方案。
数据高质量,提升训练有效性
高质量机器人动作数据是具身智能发展的核心驱动力。然而真实场景下的机器人动作数据长期面临采集成本高、标注精度不足等问题,制约着行业进步。Fourier ActionNet数据集囊括傅利叶GRx系列所有机型的各类任务训练,完整记录机器人在真实环境中的任务执行数据,涵盖了对常用工具、家居用品、食物等多种物体的精确取放、倾倒等操作,以及在不同环境条件下实现泛化执行。
全球首个全流程工具链,降低研发门槛
除了数据集的开源以外,傅利叶同步开放了全球首个包含采集算法、训练算法以及数据部署算法的全流程工具链,最大程度上与全球开发者共享研究成果。开源的训练框架(如DP、ACT、iDP3)和部署工具,进一步降低了人形机器人技术研发门槛。
共建开源生态,推动技术共享
目前,傅利叶已与国内外20多家顶尖科研院校及行业领军企业开展合作,基于GRx人形机器人平台在强化学习、模仿学习、VLM大模型、感知系统等研究领域产出多项突破性成果。此次数据集开源标志着傅利叶从技术攻坚向生态共建的战略升级,未来还将持续开放更多覆盖全身运控、多任务协同的进阶数据模块。
傅利叶始终致力于推动人形机器人开源生态建设,助力全球机器人技术共享与创新。我们诚邀所有对人形机器人研究感兴趣的开发者和科研伙伴加入这一开源浪潮,共同参与数据贡献与算法优化,迎接机器人技术赋能未来的无限可能。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。