在上周的 Nvidia GTC 大会上,一款新型液冷固态硬盘 (SSD) 发布,旨在帮助管理当今高性能 AI 数据中心基础设施的散热问题。
数据中心的液冷技术通常用于 GPU 和 CPU 等高功耗芯片。然而,作为提升数据中心存储性能和效率努力的一部分,Solidigm 推出了一款面向 AI 部署的新型液冷企业级 SSD (eSSD)。
D7-PS1010 消除了数据中心存储设备传统上需要的风扇,实现了完全液冷的 AI 服务器。
Solidigm 与 Nvidia 合作解决了 eSSD 液冷面临的挑战,如热插拔能力和单面散热限制——这两项功能都是新 D7 系列所具备的。
现实世界的痛点
在 GTC 2025 大会上,Solidigm 展示了首款 9.5mm 冷板散热 SSD。它们还将提供 15mm 规格,为风冷服务器和存储系统的设计提供更多灵活性。
"创新的 Solidigm E1.S SSD 和液冷冷板套件的组合——两者都是市场首创——在保持数据中心级可维护性的同时,在散热效率方面带来显著优势,"Solidigm 联合 CEO Kevin Noh 表示。
Solidigm 的 AI 和领导力营销高级总监 Roger Corell 向 Data Center Knowledge 表示,全盘散热和热插拔功能的需求是当今数据中心工程团队面临的"现实世界痛点"。
"电力和散热是 AI 数据中心面临的最大挑战,"Corell 说。"随着 GPU 运行速度不断提升,数据中心可用电力变得更具挑战性,这一点尤为突出。"
他补充道:"在这种环境下,对所有 GPU 服务器组件进行液冷至关重要。该解决方案通过将液冷扩展到存储设备,同时保持企业级的热插拔可维护性来解决这一问题。"
液冷 SSD 的崛起
在讨论这次发布时,Omdia 高级首席 SSD 和 HDD 存储分析师 James Zhao 表示,虽然现在判断 Solidigm 的最新产品是否代表了数据中心散热的新品类可能为时尚早,但它可能成为冷板液冷系统的"潜在新标准"。
"液冷系统主要应用于 GPU、CPU 和 DRAM 等高功耗芯片,"Zhao 向 Data Center Knowledge 表示。
"生成式 AI 和加速计算需要能提供最佳性能的内存和存储。然而,更高的性能伴随着更多热量的问题,不断为系统集成商带来挑战。对主要发热源采用更好的散热解决方案对紧凑设计的系统来说是必需的。"
Zhao 补充道:"像 Solidigm 和 Nvidia 这样的领先企业合作理解问题并创新先行很有意义。当机架中需要更多 eSSD 时,传统的单面散热会降低系统设计的灵活性,当装载更多 eSSD 时,散热效率会急剧下降。"
"热插拔能力对几乎所有服务器存储来说都是必需的。然而,对液冷系统来说仍然存在风险。我很期待看到他们如何解决这些问题。"
AI 存储散热
Solidigm 表示,D7-PS10101 E1.S 9.5mm SSD 和液冷冷板套件将于 2025 年下半年面向 AI 服务器推出。初始容量为 3.84TB 和 7.68TB,容量范围将在年内进一步扩展。
"随着 GPU 性能持续提升,某些未来的 GPU 服务器可能需要完全液冷,"Corell 说。"此外,由于液冷和我们的冷板解决方案可以消除风冷风扇,该产品可以实现紧凑的 1U 服务器设计,有助于提高计算密度。"
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。