知名 AI 研究员 Francois Chollet 共同创立的非营利组织 Arc Prize Foundation 在周一的一篇博文中宣布,他们创建了一个新的、具有挑战性的测试,用于衡量领先 AI 模型的通用智能水平。
到目前为止,这个名为 ARC-AGI-2 的新测试让大多数模型都难以应对。
根据 Arc Prize 排行榜显示,像 OpenAI 的 o1-pro 和 DeepSeek 的 R1 这样的"推理型" AI 模型在 ARC-AGI-2 上的得分在 1% 到 1.3% 之间。包括 GPT-4.5、Claude 3.7 Sonnet 和 Gemini 2.0 Flash 在内的强大非推理模型的得分约为 1%。
ARC-AGI 测试由类似谜题的问题组成,AI 需要从不同颜色方块的集合中识别视觉模式,并生成正确的"答案"网格。这些问题的设计目的是迫使 AI 适应它之前从未见过的新问题。
Arc Prize Foundation 让超过 400 人参加了 ARC-AGI-2 测试,以建立人类基准。平均而言,这些人组成的"小组"在测试题目中的正确率达到 60% —— 远远超过任何模型的得分。
在 X 平台上的一篇帖子中,Chollet 声称 ARC-AGI-2 比第一代测试 ARC-AGI-1 能更好地衡量 AI 模型的实际智能水平。Arc Prize Foundation 的测试旨在评估 AI 系统是否能在其训练数据之外高效地获取新技能。
Chollet 表示,与 ARC-AGI-1 不同,新测试防止 AI 模型依赖"暴力计算" —— 即大量计算力 —— 来寻找解决方案。Chollet 此前承认这是 ARC-AGI-1 的一个主要缺陷。
为了解决第一个测试的缺陷,ARC-AGI-2 引入了一个新的衡量标准:效率。它还要求模型即时解释模式,而不是依赖记忆。
Arc Prize Foundation 联合创始人 Greg Kamradt 在一篇博文中写道:"智能不仅仅由解决问题或获得高分的能力来定义。获取和部署这些能力的效率是一个关键的、决定性的组成部分。核心问题不仅仅是'AI 能否获得解决任务的技能?',还包括'以什么效率或成本?'"
ARC-AGI-1 在大约五年内都未被超越,直到 2024 年 12 月,OpenAI 发布了其先进的推理模型 o3,该模型超越了所有其他 AI 模型,并在评估中达到了与人类相当的表现。然而,正如我们当时指出的,o3 在 ARC-AGI-1 上的性能提升伴随着高昂的成本。
OpenAI 的 o3 模型版本 —— o3 (low) —— 首次在 ARC-AGI-1 上达到新高度,在测试中得分 75.7%,但在 ARC-AGI-2 上每个任务使用 200 美元的计算力只获得了 4% 的可怜得分。
随着科技行业许多人呼吁需要新的、未饱和的基准来衡量 AI 进展,ARC-AGI-2 应运而生。Hugging Face 的联合创始人 Thomas Wolf 最近告诉 TechCrunch,AI 行业缺乏足够的测试来衡量所谓人工通用智能的关键特征,包括创造力。
与新基准一同发布的还有 Arc Prize 2025 竞赛,挑战开发者在每个任务仅花费 0.42 美元的情况下,在 ARC-AGI-2 测试中达到 85% 的准确率。
好文章,需要你的鼓励
2025年,企业技术高管面临巨大压力,需要帮助企业从持续的AI投入中获得回报。大多数高管取得了进展,完善了项目优先级排序方法。然而,CIO仍面临AI相关问题。支离破裂的AI监管环境和宏观经济阻力将继续推动技术高管保持谨慎态度。随着AI采用增长的影响不断显现,一些CIO预期明年将带来劳动力策略变化。
这篇论文提出了CJE(因果法官评估)框架,解决了当前LLM评估中的三大致命问题:AI法官偏好倒置、置信区间失效和离线策略评估失败。通过AutoCal-R校准、SIMCal-W权重稳定和OUA不确定性推理,CJE仅用5%的专家标签就达到了99%的排名准确率,成本降低14倍,为AI评估提供了科学可靠的解决方案。
FinOps基金会周四更新了其FinOps开放成本和使用规范云成本管理工具,新版本1.3更好地支持多供应商工作流。该版本新增了合同承诺和协商协议数据集,增加了跨工作负载成本分摊跟踪列,以及云支出和使用报告时效性和完整性的元数据可见性。随着云和AI采用推动企业IT预算增长,技术供应商正在关注将成本与价值联系起来的努力。大型企业通常使用三到四家云供应商,小企业可能使用两家,同时还有数据中心、SaaS和许可等服务。
NVIDIA团队开发出Fast-FoundationStereo系统,成功解决了立体视觉AI在速度与精度之间的两难选择。通过分而治之的策略,该系统实现了超过10倍的速度提升同时保持高精度,包括知识蒸馏压缩特征提取、神经架构搜索优化成本过滤,以及结构化剪枝精简视差细化。此外,研究团队还构建了包含140万对真实图像的自动伪标注数据集,为立体视觉的实时应用开辟了新道路。