知名 AI 研究员 Francois Chollet 共同创立的非营利组织 Arc Prize Foundation 在周一的一篇博文中宣布,他们创建了一个新的、具有挑战性的测试,用于衡量领先 AI 模型的通用智能水平。
到目前为止,这个名为 ARC-AGI-2 的新测试让大多数模型都难以应对。
根据 Arc Prize 排行榜显示,像 OpenAI 的 o1-pro 和 DeepSeek 的 R1 这样的"推理型" AI 模型在 ARC-AGI-2 上的得分在 1% 到 1.3% 之间。包括 GPT-4.5、Claude 3.7 Sonnet 和 Gemini 2.0 Flash 在内的强大非推理模型的得分约为 1%。
ARC-AGI 测试由类似谜题的问题组成,AI 需要从不同颜色方块的集合中识别视觉模式,并生成正确的"答案"网格。这些问题的设计目的是迫使 AI 适应它之前从未见过的新问题。
Arc Prize Foundation 让超过 400 人参加了 ARC-AGI-2 测试,以建立人类基准。平均而言,这些人组成的"小组"在测试题目中的正确率达到 60% —— 远远超过任何模型的得分。
在 X 平台上的一篇帖子中,Chollet 声称 ARC-AGI-2 比第一代测试 ARC-AGI-1 能更好地衡量 AI 模型的实际智能水平。Arc Prize Foundation 的测试旨在评估 AI 系统是否能在其训练数据之外高效地获取新技能。
Chollet 表示,与 ARC-AGI-1 不同,新测试防止 AI 模型依赖"暴力计算" —— 即大量计算力 —— 来寻找解决方案。Chollet 此前承认这是 ARC-AGI-1 的一个主要缺陷。
为了解决第一个测试的缺陷,ARC-AGI-2 引入了一个新的衡量标准:效率。它还要求模型即时解释模式,而不是依赖记忆。
Arc Prize Foundation 联合创始人 Greg Kamradt 在一篇博文中写道:"智能不仅仅由解决问题或获得高分的能力来定义。获取和部署这些能力的效率是一个关键的、决定性的组成部分。核心问题不仅仅是'AI 能否获得解决任务的技能?',还包括'以什么效率或成本?'"
ARC-AGI-1 在大约五年内都未被超越,直到 2024 年 12 月,OpenAI 发布了其先进的推理模型 o3,该模型超越了所有其他 AI 模型,并在评估中达到了与人类相当的表现。然而,正如我们当时指出的,o3 在 ARC-AGI-1 上的性能提升伴随着高昂的成本。
OpenAI 的 o3 模型版本 —— o3 (low) —— 首次在 ARC-AGI-1 上达到新高度,在测试中得分 75.7%,但在 ARC-AGI-2 上每个任务使用 200 美元的计算力只获得了 4% 的可怜得分。
随着科技行业许多人呼吁需要新的、未饱和的基准来衡量 AI 进展,ARC-AGI-2 应运而生。Hugging Face 的联合创始人 Thomas Wolf 最近告诉 TechCrunch,AI 行业缺乏足够的测试来衡量所谓人工通用智能的关键特征,包括创造力。
与新基准一同发布的还有 Arc Prize 2025 竞赛,挑战开发者在每个任务仅花费 0.42 美元的情况下,在 ARC-AGI-2 测试中达到 85% 的准确率。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。