DeepSeek 今天发布了其 DeepSeek-V3 大语言模型的改进版本,并采用了新的开源许可证。
软件开发者兼博主 Simon Willison 率先报道了这一更新。DeepSeek 本身并未发布公告。新模型的 Readme 文件 (代码仓库中通常包含说明注释的组件) 目前仍是空白的。
DeepSeek-V3 是一个于去年 12 月首次亮相的开源大语言模型。它是 DeepSeek-R1 的基础,而 DeepSeek-R1 是一个推理模型,今年早些时候使这家中国人工智能实验室声名鹊起。DeepSeek-V3 是一个通用模型,并非专门针对推理进行优化,但它可以解决一些数学问题并生成代码。
在此之前,该大语言模型是在自定义开源许可证下发布的。DeepSeek 今天推出的新版本改用了广泛使用的 MIT 许可证。开发者几乎可以不受任何限制地在商业项目中使用和修改更新后的模型。
更值得注意的是,新版 DeepSeek-V3 似乎比原版更强大且硬件效率更高。
大多数最先进的大语言模型只能在数据中心的图形卡上运行。Apple Inc. 机器学习研究组的研究科学家 Awni Hannun 在 Mac Studio 上运行了新版 DeepSeek-V3。该模型能够以每秒约 20 个 token 的速率生成输出。
这台 Mac Studio 采用了售价 9,499 美元的高端配置。在该机器上部署 DeepSeek-V3 需要应用 4 位量化。这是一种大语言模型优化技术,通过牺牲一些输出精度来换取更低的内存使用和延迟。
根据 VentureBeat 发现的一条 X 平台帖子,新版 DeepSeek-V3 在编程方面比原版更出色。该帖子包含了一个评估模型生成 Python 和 Bash 代码能力的基准测试。新版本获得了约 60% 的得分,比原版 DeepSeek-V3 高出几个百分点。
该模型仍落后于 DeepSeek-R1 (该 AI 实验室的旗舰推理优化大语言模型)。最新的 DeepSeek-V3 版本的得分也低于另一个推理优化模型 Qwen-32B。
尽管 DeepSeek-V3 拥有 6,710 亿个参数,但在回答提示时只激活约 370 亿个参数。这种设计使模型比传统的激活所有参数的大语言模型需要更少的基础设施。据 DeepSeek 称,该大语言模型的效率也高于 DeepSeek-R1,这降低了推理成本。
原版 DeepSeek-V3 的训练数据集包含 14.8 万亿个 token。训练过程使用了约 280 万个显卡小时,显著低于前沿大语言模型通常所需的时间。为了提高模型的输出质量,DeepSeek 工程师使用来自 DeepSeek-R1 的提示响应对其进行了微调。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。