DeepSeek 今天发布了其 DeepSeek-V3 大语言模型的改进版本,并采用了新的开源许可证。
软件开发者兼博主 Simon Willison 率先报道了这一更新。DeepSeek 本身并未发布公告。新模型的 Readme 文件 (代码仓库中通常包含说明注释的组件) 目前仍是空白的。
DeepSeek-V3 是一个于去年 12 月首次亮相的开源大语言模型。它是 DeepSeek-R1 的基础,而 DeepSeek-R1 是一个推理模型,今年早些时候使这家中国人工智能实验室声名鹊起。DeepSeek-V3 是一个通用模型,并非专门针对推理进行优化,但它可以解决一些数学问题并生成代码。
在此之前,该大语言模型是在自定义开源许可证下发布的。DeepSeek 今天推出的新版本改用了广泛使用的 MIT 许可证。开发者几乎可以不受任何限制地在商业项目中使用和修改更新后的模型。
更值得注意的是,新版 DeepSeek-V3 似乎比原版更强大且硬件效率更高。
大多数最先进的大语言模型只能在数据中心的图形卡上运行。Apple Inc. 机器学习研究组的研究科学家 Awni Hannun 在 Mac Studio 上运行了新版 DeepSeek-V3。该模型能够以每秒约 20 个 token 的速率生成输出。
这台 Mac Studio 采用了售价 9,499 美元的高端配置。在该机器上部署 DeepSeek-V3 需要应用 4 位量化。这是一种大语言模型优化技术,通过牺牲一些输出精度来换取更低的内存使用和延迟。
根据 VentureBeat 发现的一条 X 平台帖子,新版 DeepSeek-V3 在编程方面比原版更出色。该帖子包含了一个评估模型生成 Python 和 Bash 代码能力的基准测试。新版本获得了约 60% 的得分,比原版 DeepSeek-V3 高出几个百分点。
该模型仍落后于 DeepSeek-R1 (该 AI 实验室的旗舰推理优化大语言模型)。最新的 DeepSeek-V3 版本的得分也低于另一个推理优化模型 Qwen-32B。
尽管 DeepSeek-V3 拥有 6,710 亿个参数,但在回答提示时只激活约 370 亿个参数。这种设计使模型比传统的激活所有参数的大语言模型需要更少的基础设施。据 DeepSeek 称,该大语言模型的效率也高于 DeepSeek-R1,这降低了推理成本。
原版 DeepSeek-V3 的训练数据集包含 14.8 万亿个 token。训练过程使用了约 280 万个显卡小时,显著低于前沿大语言模型通常所需的时间。为了提高模型的输出质量,DeepSeek 工程师使用来自 DeepSeek-R1 的提示响应对其进行了微调。
好文章,需要你的鼓励
2025年,企业技术高管面临巨大压力,需要帮助企业从持续的AI投入中获得回报。大多数高管取得了进展,完善了项目优先级排序方法。然而,CIO仍面临AI相关问题。支离破裂的AI监管环境和宏观经济阻力将继续推动技术高管保持谨慎态度。随着AI采用增长的影响不断显现,一些CIO预期明年将带来劳动力策略变化。
这篇论文提出了CJE(因果法官评估)框架,解决了当前LLM评估中的三大致命问题:AI法官偏好倒置、置信区间失效和离线策略评估失败。通过AutoCal-R校准、SIMCal-W权重稳定和OUA不确定性推理,CJE仅用5%的专家标签就达到了99%的排名准确率,成本降低14倍,为AI评估提供了科学可靠的解决方案。
FinOps基金会周四更新了其FinOps开放成本和使用规范云成本管理工具,新版本1.3更好地支持多供应商工作流。该版本新增了合同承诺和协商协议数据集,增加了跨工作负载成本分摊跟踪列,以及云支出和使用报告时效性和完整性的元数据可见性。随着云和AI采用推动企业IT预算增长,技术供应商正在关注将成本与价值联系起来的努力。大型企业通常使用三到四家云供应商,小企业可能使用两家,同时还有数据中心、SaaS和许可等服务。
NVIDIA团队开发出Fast-FoundationStereo系统,成功解决了立体视觉AI在速度与精度之间的两难选择。通过分而治之的策略,该系统实现了超过10倍的速度提升同时保持高精度,包括知识蒸馏压缩特征提取、神经架构搜索优化成本过滤,以及结构化剪枝精简视差细化。此外,研究团队还构建了包含140万对真实图像的自动伪标注数据集,为立体视觉的实时应用开辟了新道路。