去年夏天,矿业初创公司 KoBold 在赞比亚发现了十多年来全球最大的铜矿床之一,引起了广泛关注。
现在,另一家初创公司 Earth AI 向 TechCrunch 独家透露了他们的重大发现:在澳大利亚一些被其他矿业公司忽视了数十年的地区发现了具有前景的关键矿产。虽然目前还不清楚这些矿藏是否像 KoBold 的发现那样规模庞大,但这一消息表明,未来关键矿产的供应很可能来自于人工智能解析实地数据的综合成果。
"(矿业领域的) 真正前沿并不在于地理位置,而在于技术," Earth AI 的创始人兼首席执行官 Roman Teslyuk 在接受 TechCrunch 采访时表示。
Earth AI 在北领地发现了铜、钴和黄金矿床,在新南威尔士另一处距离悉尼西北 500 公里 (310 英里) 的地点发现了银、钼和锡矿床。
Earth AI 在澳大利亚两个此前被忽视的地区发现了具有前景的关键矿产。
Earth AI 源于 Teslyuk 的研究生学习经历。来自乌克兰的 Teslyuk 在悉尼大学攻读博士学位期间,深入了解了澳大利亚的矿业行业。在澳大利亚,政府拥有矿产资源的所有权,并以六年为期进行租赁。他表示,自 1970 年代以来,勘探公司必须将其数据提交到国家档案库。
"出于某些原因,没有人使用这些数据," 他说。"如果我能建立一个算法来吸收所有这些知识,并从过去数百万地质学家的失败和成功中学习,我就能更好地预测未来在哪里可以找到矿产。"
Teslyuk 最初将 Earth AI 创建为一家专注于预测潜在矿床的软件公司,然后寻找可能对进一步勘探感兴趣的客户。但客户们对投资持谨慎态度,部分原因是他们不愿意在一个未经验证的技术的预测上投入数百万资金。
"矿业是一个非常保守的行业," Teslyuk 说。"任何超出既定准则的东西都被视为异端。"
因此,Earth AI 决定开发自己的钻探设备,以证明其软件所识别的地点确实如预测的那样具有前景。该公司入选了 Y Combinator 2019 年春季批次,并在接下来的几年里不断完善其硬件和软件。今年 1 月,Earth AI 完成了 2000 万美元的 B 轮融资。
虽然该公司像 KoBold 一样使用人工智能寻找矿产,但 Teslyuk 表示他们采用了不同的方法。他说,Earth AI 的算法经过训练,能够快速高效地扫描大面积区域,发现可能被忽视的矿床。
"过去在 20 世纪寻找金属的方式耗时非常长,需要几十年才能找到一些东西," Teslyuk 说。"以现代世界的发展速度,你根本无法等待那么长时间。"
好文章,需要你的鼓励
美国网络安全和基础设施安全局指示联邦机构修补影响思科ASA 5500-X系列防火墙设备的两个零日漏洞CVE-2025-20362和CVE-2025-20333。这些漏洞可绕过VPN身份验证并获取root访问权限,已被黑客积极利用。攻击与国家支持的ArcaneDoor黑客活动有关,黑客通过漏洞安装bootkit恶意软件并操控只读存储器实现持久化。思科已发布补丁,CISA要求机构清点易受攻击系统并在今日前完成修补。
康考迪亚大学研究团队通过对比混合量子-经典神经网络与传统模型在三个基准数据集上的表现,发现量子增强模型在准确率、训练速度和资源效率方面均显著优于传统方法。研究显示混合模型的优势随数据集复杂度提升而增强,在CIFAR100上准确率提升9.44%,训练速度提升5-12倍,且参数更少。该成果为实用化量子增强人工智能铺平道路。
TimeWave是一款功能全面的计时器应用,超越了苹果自带时钟应用的功能。它支持创建流式计时器,让用户可以设置连续的任务计时,帮助专注工作。应用采用简洁的黑白设计,融入了Liquid Glass元素。内置冥想、番茄工作法、20-20-20护眼等多种计时模式,支持实时活动显示和Siri快捷指令。免费版提供基础功能,高级版需付费订阅。
沙特KAUST大学团队开发了专门针对阿拉伯语的AI模型家族"Hala",通过创新的"翻译再调优"技术路线,将高质量英语指令数据转化为450万规模的阿拉伯语语料库,训练出350M到9B参数的多个模型。在阿拉伯语专项测试中,Hala在同规模模型中表现最佳,证明了语言专门化策略的有效性,为阿拉伯语AI发展和其他语言的专门化模型提供了可复制的技术方案。