OpenAI 被多方指控在未经许可的情况下使用受版权保护的内容来训练其 AI。现在,一个 AI 监督组织发布的新研究报告提出了一个严重的指控,称该公司越来越依赖未获授权的非公开图书来训练更复杂的 AI 模型。
AI 模型本质上是复杂的预测引擎。通过大量数据的训练(包括书籍、电影、电视节目等),它们学习模式并找到从简单提示中推断的新方法。当模型"撰写"希腊悲剧的论文或"绘制" Ghibli 风格的图像时,它只是从其庞大的知识库中进行近似提取,而不是创造出全新的内容。
虽然包括 OpenAI 在内的一些 AI 实验室已开始采用 AI 生成的数据来训练 AI(因为他们已经用尽了真实世界的数据源,主要是公共网络),但很少有实验室完全放弃使用真实世界的数据。这可能是因为仅使用合成数据进行训练会带来风险,比如可能降低模型的性能。
这份新报告来自 AI Disclosures Project,这是一个由媒体大亨 Tim O'Reilly 和经济学家 Ilan Strauss 于 2024 年共同创立的非营利组织。报告得出结论,OpenAI 可能在 O'Reilly Media 的付费墙后的图书上训练了其 GPT-4o 模型。(O'Reilly 是 O'Reilly Media 的 CEO。)
在 ChatGPT 中,GPT-4o 是默认模型。该报告指出,O'Reilly 与 OpenAI 之间并没有授权协议。
报告的作者写道:"OpenAI 最新且能力更强的模型 GPT-4o,相比其早期模型 GPT-3.5 Turbo,展现出对付费墙后 O'Reilly 图书内容的强大识别能力...相比之下,GPT-3.5 Turbo 对公开可访问的 O'Reilly 图书样本表现出更高的相对识别能力。"
该报告使用了一种称为 DE-COP 的方法,这种方法首次在 2024 年的一篇学术论文中提出,旨在检测语言模型训练数据中的版权内容。这种方法也被称为"成员推理攻击",它测试模型是否能可靠地区分人类创作的文本和同一文本的 AI 生成改写版本。如果模型能做到这一点,就表明它可能在训练数据中预先接触过这些文本。
报告的合著者 - O'Reilly、Strauss 和 AI 研究员 Sruly Rosenblat 表示,他们探测了 GPT-4o、GPT-3.5 Turbo 和其他 OpenAI 模型对训练截止日期前后发布的 O'Reilly Media 图书的了解程度。他们使用了来自 34 本 O'Reilly 图书的 13,962 个段落摘录,以估计特定摘录被包含在模型训练数据集中的概率。
根据报告结果,GPT-4o 对付费墙后的 O'Reilly 图书内容的"识别"能力远超 OpenAI 的旧模型,包括 GPT-3.5 Turbo。作者表示,即使考虑到可能的混淆因素,如新模型在判断文本是否为人类创作方面的能力提升,这一结论依然成立。
作者写道:"GPT-4o [很可能] 识别并已预先了解了许多在其训练截止日期之前发布的非公开 O'Reilly 图书。"
作者谨慎地指出,这并非确凿证据。他们承认他们的实验方法并非完美无缺,而且 OpenAI 可能是从用户复制粘贴到 ChatGPT 的内容中收集了这些付费墙后的图书摘录。
使情况更加复杂的是,作者没有评估 OpenAI 最新的模型系列,包括 GPT-4.5 和"推理"模型如 o3-mini 和 o1。这些模型可能没有使用付费墙后的 O'Reilly 图书数据进行训练,或使用的数据量少于 GPT-4o。
话虽如此,OpenAI 一直在寻求更高质量的训练数据这一点并不是秘密,该公司一直提倡放宽使用版权数据开发模型的限制。公司甚至雇佣记者来帮助微调其模型的输出。这是整个行业的一个趋势:AI 公司招募科学和物理等领域的专家,让这些专家将他们的知识输入到 AI 系统中。
值得注意的是,OpenAI 确实为部分训练数据付费。该公司与新闻出版商、社交网络、图片媒体库等机构都有授权协议。OpenAI 还提供选择退出机制(尽管并不完善),允许版权所有者标记他们不希望公司用于训练目的的内容。
然而,当 OpenAI 在美国法院就其训练数据做法和版权法处理方式应对多起诉讼时,这份 O'Reilly 报告无疑让其处境更加尴尬。
OpenAI 没有回应置评请求。
好文章,需要你的鼓励
Genspark推出超级智能体,将"氛围编程"概念扩展至企业工作流程,实现"氛围工作"模式。该系统采用9个大语言模型的专家混合架构,配备80多种工具和10多个数据集,通过规划-执行-观察-回溯循环运行。系统能自主处理复杂业务任务,甚至代替用户拨打电话。45天内实现3600万美元年收入,展现了自主智能体平台的商业可行性,挑战传统企业AI架构理念。
ByteDance智能创作实验室发布的Phantom-Data是首个大规模跨情境主体一致性视频生成数据集,包含约100万个身份一致配对样本。该数据集通过创新的三阶段构建管道,从5300万视频和30亿图像中精选高质量跨场景配对,有效解决AI视频生成中的"复制粘贴"问题,显著提升文本遵循能力和视觉质量。
医疗保健已成为AI应用的热点领域,在疾病诊断、康复监测和新药开发方面证明了其价值。然而,行业仍面临临床人员短缺、人口老龄化等挑战。AI智能体作为下一波AI变革浪潮,相比现有AI工具,能够执行更复杂的任务并减少人工干预。它们不仅能被动提供信息,还能主动采取行动,如自动分诊调度、辅助临床决策、远程患者监护等,有望在十年内彻底改变医疗服务的提供、管理和体验方式。
普林斯顿大学研究团队开发了ReasonFlux-PRM,这是首个能深度理解AI复杂思维过程的评分系统。不同于传统只看最终答案的评估方法,新系统能评判AI思考轨迹的每个步骤质量,在数学和科学推理任务上实现了平均4.5%-12.1%的性能提升,为AI教育和训练提供了突破性的解决方案。