Microsoft 的研究人员称他们已经开发出了迄今为止最大的 1-bit AI 模型,也被称为 “bitnet”。该模型名为 BitNet b1.58 2B4T,在 MIT 许可证下公开发布,并且可以在包括 Apple M2 在内的 CPU 上运行。
Bitnets 本质上是为轻量级硬件设计的压缩模型。在标准模型中,定义模型内部结构的数值即权重,通常经过量化处理,以便模型在各种设备上均能良好运行。对权重进行量化减少了表示这些权重所需的比特数 —— 比特是计算机能处理的最小单位 —— 这使得模型可以在内存较少、运行速度更快的芯片上运行。
Bitnets 将权重量化为仅三个值:-1、0 和 1。理论上,这使它们在内存和计算效率上远超当今大多数模型。
Microsoft 的研究人员表示,BitNet b1.58 2B4T 是首个拥有 20 亿参数的 bitnet(“参数”在这里基本上与“权重”同义)。据称,该模型在一个包含 4 万亿 Token 的数据集上训练 —— 一项估计相当于约 3300 万本书 —— 使其在性能上优于同类规模的传统模型。
需要明确的是,BitNet b1.58 2B4T 并未彻底超越所有竞品的 20 亿参数模型,但它似乎能够与之抗衡。根据研究人员的测试结果,该模型在 GSM8K(一组小学水平的数学问题)和 PIQA(测试物理常识推理能力)等基准测试中,表现均超过了 Meta 的 Llama 3.2 1B、Google 的 Gemma 3 1B 和 Alibaba 的 Qwen 2.5 1.5B。
更为引人注目的是,BitNet b1.58 2B4T 的运行速度比同等规模的其他模型更快 —— 在某些情况下,其速度是对方的两倍,而所需内存却只有极小的一部分。
然而,这也有一个前提条件。
实现这种性能需要使用 Microsoft 自研的框架 bitnet.cpp,而该框架目前仅支持某些特定硬件。支持芯片列表中并未包括统治 AI 基础设施格局的 GPU。
总的来说,bitnets 可能存在希望,尤其适用于资源受限的设备。但兼容性问题 —— 并且很可能将继续成为一个主要障碍。
好文章,需要你的鼓励
来自香港科技大学和MiniMax的研究团队开发了SynLogic,一个可合成35种逻辑推理任务的框架与数据集,填补了AI逻辑训练资源缺口。研究表明,在SynLogic上进行强化学习训练显著提升了模型逻辑推理能力,32B模型在BBEH测试中超越了DeepSeek-R1-Distill模型6个百分点。更值得注意的是,将SynLogic与数学和编程数据混合训练不仅提高了这些领域的学习效率,还增强了模型的泛化能力,表明逻辑推理是构建通用AI推理能力的重要基础。
这项研究揭示了大型语言模型的惊人能力:只需两个特殊训练的向量,冻结的语言模型就能在一次计算中生成数百个准确词汇,而非传统的逐词生成。研究者发现,这种能力要求特定的输入排列方式,且生成速度比自回归方法快约279倍。这一发现不仅展示了语言模型未被充分探索的并行生成潜力,还为快速文本重建开辟了新方向。
腾讯混元团队提出的"ConciseR"是一种通过两阶段强化学习实现大模型简洁推理的新方法。研究遵循"先走后跑"原则,先确保模型具备准确推理能力,再优化输出简洁性。第一阶段通过改进的群体相对策略优化(GRPO++)提升推理能力,第二阶段通过长度感知的群体相对策略优化(L-GRPO)减少输出长度。实验结果显示,该方法在AIME、MATH-500等多个基准测试中既减少了输出长度(平均20%以上),又保持或提高了准确率,展现出高效率-高准确率的理想平衡。
这项由香港科技大学团队开展的研究首次全面评估了压缩对大语言模型Agent能力的影响。研究发现,虽然4位量化能较好地保留工作流生成和工具使用能力(仅下降1%-3%),但在实际应用中性能下降达10%-15%。团队提出的ACBench基准测试横跨工具使用、工作流生成、长文本理解和实际应用四大能力,评估了不同压缩方法对15种模型的影响。结果显示,AWQ量化效果最佳,蒸馏模型在Agent任务上表现不佳,大型模型对压缩更具韧性。研究还提出ERank等创新分析方法,为实际部署提供了切实指导。