Yelp 本周二表示,正在部署由 AI 驱动的 “语音助手” 来帮助服务提供商和餐厅处理电话、解答基本问题,并完成诸如将客户加入餐厅等候名单等任务。
Yelp 指出,其语音助手无需复杂的设置或 API 集成,可以利用现有元数据以及商户提供的数据(例如发音指南、定制语音问候和电话转接规则)。举例来说,对于餐厅,Yelp 的语音助手可以连接至餐厅的管理软件,在通话结束后向顾客发送预订详情。
此外,Yelp 的语音助手还能处理自动垃圾电话过滤和通话数据分析等任务。对于较为复杂的请求,语音助手会将通话交由人工处理,并在通话结束后向企业提供通话摘要、文字记录和录音。
Yelp 首席产品官 Craig Saldanha 在接受 TechCrunch 采访时表示,“通常情况下,专业人士在恶劣的工作环境下可能无法接听电话,我们希望开发一款能帮助转化那些通常可能错失的潜在客户的产品。”
Yelp 正在使用 OpenAI 的 Realtime API 来实现端到端通话管理。这使得 Yelp 的语音助手在公司知识图谱的辅助下,能够提出并回答后续问题。
Yelp 表示,为了在延迟、语音识别准确性以及整体客户体验方面达到最佳效果,公司正在不断评估并采用新模型。
Saldanha 认为,随着时间的推移,语音技术将逐步普及,而差异化的关键将是底层数据以及 AI 如何处理客户查询的方式。他补充道,在这些方面,Yelp 相较于竞争对手具备一定优势。
好文章,需要你的鼓励
Salesforce研究团队发布开源工具包MCPEval,基于模型上下文协议(MCP)架构评估AI智能体工具使用性能。该工具突破传统静态测试局限,通过全自动化流程收集详细任务轨迹和协议交互数据,为智能体行为提供前所未有的可视化分析。MCPEval能快速评估MCP工具和服务器,生成综合评估报告,为企业智能体部署提供可操作的改进建议。
清华大学团队推出AnyCap项目,通过轻量级"即插即用"框架解决多模态AI字幕生成缺乏个性化控制的问题。该项目包含模型、数据集和评估基准,能让现有AI系统根据用户需求生成定制化字幕,在不重训基础模型的情况下显著提升控制能力,为AI内容创作的个性化发展奠定基础。
月之暗面Kimi K2技术报告:解读万亿参数的智能体模型(含K2与DeepSeek R1对比)
耶鲁大学团队开发了全球首个AI科学实验设计评估系统ABGEN,测试了18个先进AI模型设计消融实验的能力。研究发现最好的AI系统得分4.11分,仍低于人类专家的4.80分,但在人机协作模式下表现显著改善。研究还发现现有自动评估系统可靠性不足,建立了元评估基准ABGEN-EVAL。这项研究为AI在科学研究中的应用提供了重要评估框架。