Anaconda Inc. 是一家开源数据科学平台的开发商,宣布推出一款专为开源软件打造的统一人工智能开发平台。
Anaconda AI 平台提供专为开源开发设计的安全性和治理功能,并融合了公司预先审核的软件包和生产力工具,据称可将运营效率提高多达 80%。
该平台将可信分发、简化工作流程、实时洞察与治理控制整合于一体,供 Python 开发者使用。Anaconda 引用了其自身研究,发现约一半的数据科学从业者使用开源软件;Synopsys Inc. 估计 96% 的商业软件包含开源组件。
由于任何人都可以为项目做贡献,管理开源软件包需要考虑独特的安全和集成问题。Anaconda AI 平台提供的防护措施不仅能确保负责任的使用,还使企业开发者能够“一次构建,安全无忧地在各处大规模部署”。
跨平台兼容性
Anaconda 简化并自动化了使用开源软件的大部分繁琐工作,如验证软件供应链的有效性、检查漏洞以及确保软件包能在现有硬件上正常运行。
“所有这些问题虽然不那么引人注目,却是客户在使用开源软件时所面临的具体日常痛点,”Anaconda 联合创始人兼首席 AI 与创新官 Peter Wang 说,“我们为他们承担了这些负担,让他们获得可信赖的软件包来源和一个可以将开发环境与生产环境同步的平台。他们可以清楚地看到正在使用哪些开源模型,哪些已经加固、适当量化并具备合适的性能水平。”
Wang 表示,Anaconda 之所以选择构建面向 AI 开发的平台,是因为预见到大量普通开发者将使用大语言模型编写代码。“我们在过去几年中见证了开源攻击和安全漏洞的激增,”他说,“我们认为推出一个能应对 AI 漏洞并支持 Python 下一代 AI 应用场景的平台既重要又及时。”
该平台消除了针对特定环境的障碍,使团队能够在本地、云端及各类设备上创建和运行 AI 应用,而无需为每个目标重写代码。“我们的经验表明,数据科学家虽会使用云,但几乎没有人会只依赖云平台,”Wang 说道。
重新设计的界面(见图)使各种工具轻松可用。统一的命令行界面认证提供自动化的 Token 分发与配置,有效降低了管理开销。
开发者可以访问数百个经过 Anaconda 测试的兼容开源软件包。快速启动环境则提供了针对 Python、金融及 AI 开发的预配置、经过安全审核的工作空间。
AI 代码助手
对于那些对 Python 不是十分精通的开发者,Anaconda AI 助手(目前正处于私人测试阶段)实现了用户、团队和组织之间的可视化及协作自动化。企业单点登录功能可以与现有技术栈无缝集成。
集中式错误跟踪与日志记录让团队能够通过跨工作流程的实时监控更快地识别并解决问题,而治理功能则提供了支持遵从主要法规的审计跟踪。软件包审计功能能够追踪使用模式、识别漏洞并生成审计日志。
“开发者并不想学习全新的用户界面,”Wang 说,“他们只希望使用自己喜欢的笔记本和工具,同时接入同一基础设施。”他表示,Anaconda 致力于与 VS Code、Cursor 以及 Amazon Web Services Inc. 的 Bedrock 等流行工具和平台进行集成,同时支持本地和云端平台。
Anaconda 表示,其用户数量去年已增长至超过一百万,并且现已涵盖 94% 的财富 500 强公司。根据 Crunchbase 的数据,该公司已获得 8300 万美元的融资。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。