PEAK:AIO 声称,它利用 CXL 内存解决 AI 推理模型中 GPU 内存的局限性,而不是将 KVCache 内容卸载到 NVMe 闪存驱动器。
这家总部位于英国的 AI 与 GPU 数据基础设施专业公司表示,AI 工作负载正从 “静态提示” 发展为 “动态上下文流、模型创建流水线 以及 长运行代理”,而工作负载不断增长,使得 GPU 的高带宽内存 (HBM) 的有限容量受到压力,令 AI 任务受内存瓶颈限制。
这导致任务的工作内存内容——即 KVCache——超出 HBM 容量,令 Token 被驱逐,并在需要时必须重新计算,从而延长任务运行时间。
包括 VAST Data 推出的 VUA、WEKA 推出的 Augmented Memory Grid,以及 Pliops 推出的 XDP LightningAI PCIe-add-in 卡前端连接 NVMe SSD 等多家供应商,均已尝试通过在外部闪存存储上划分一个类似于虚拟内存交换分区的 HBM 内存区域来扩充 HBM 容量。
PEAK:AIO 正在开发一款 1RU Token 内存产品,该产品将采用 CXL 内存、 PCIe gen 5、 NVMe 以及 GPU Direct 与 RDMA 配合。
PEAK:AIO 首席 AI 策略官兼联合创始人 Eyal Lemberger 在一份声明中表示: “无论您是部署跨会话思考的代理,还是扩展到百万 Token 上下文窗口 —— 在此情况下,每个模型的内存需求可能超过 500GB —— 这款设备都能通过将 Token 历史视为内存而非存储来实现扩展。现在是让内存像计算能力一样实现横向扩展的时候了。”
PEAK:AIO 表示,其设备支持: o 会话、模型与节点间的 KVCache 重用 o 扩展上下文窗口以实现更长的大语言模型历史记录 o 通过 CXL 分层实现 GPU 内存卸载 o 以及通过 NVMe-oF 上的 RDMA 实现超低延迟访问
它宣称,通过利用 CXL 内存级性能,其实现的 Token 内存可表现得如同 RAM 而非文件;而其他供应商(包括 Pliops、 VAST 和 WEKA)则无法做到这一点。PEAK:AIO 联合创始人及首席战略官 Mark Klarzynski 表示: “这正是现代 AI 所期待的 Token 内存体系。”
据悉,该技术使 AI 工作负载开发者能够构建一个系统,以内存级延迟缓存 Token 历史、注意力图以及流数据。PEAK:AIO 表示,其方案 “与 Nvidia 的 KVCache 重用及内存回收模型直接契合”,并且 “为基于 TensorRT-LLM 或 Triton 构建的团队提供插件支持,从而以最小的集成工作加速推理过程。”
理论上,PCIe gen 5 CXL 控制器的延迟约为 200 纳秒,而通过 GPU Direct 访问 NVMe SSD 的延迟约为 1.2 毫秒(即 1,200,000 纳秒),比 CXL 内存访问的延迟长约 6,000 倍。PEAK 的 Token 内存设备能够以 <5 微秒的延迟提供高达 150 GB/秒的持续吞吐量。
Lemberger 指出: “当其他厂商试图将文件系统扭曲得像内存时,我们构建了真正表现如内存的基础设施,因为这正是现代 AI 所需要的。在大规模应用中,问题不在于保存文件,而在于能够在微秒级别让每个 Token 均可访问。这实质上是一个内存问题,而我们正是通过拥抱最新硅层技术来解决它。”
PEAK:AIO 的 Token 内存设备为软件定义型,采用现成服务器,并预计将在第三季度投入生产。
好文章,需要你的鼓励
初创公司Positron获得5160万美元A轮融资,推出专门针对AI推理的Atlas芯片。该公司声称其芯片在性能功耗比和成本效益方面比英伟达H100高出2-5倍,并已获得Cloudflare等企业客户采用。Positron专注于内存优化设计,无需液体冷却,可直接部署在现有数据中心。公司计划2026年推出支持16万亿参数模型的下一代Titan平台。
这项由Midjourney团队主导的研究解决了AI创意写作中的关键问题:如何让AI既能写出高质量内容,又能保持创作的多样性和趣味性。通过引入"偏差度"概念和开发DDPO、DORPO两种新训练方法,他们成功让AI学会从那些被传统方法忽视的优秀独特样本中汲取创意灵感,最终训练出的模型在保持顶级质量的同时,创作多样性接近人类水平,为AI创意写作开辟了新方向。
忽视智能体AI的潜力,特别是其对现代化数据基础设施的需求,面临着与忽视互联网的零售商相同的生存风险。关键不在于是否投资,而在于如何确保投资转化为可衡量的现实收益。企业需要超越AI试验阶段,明确业务目标,从治理开始构建ROI模型。成功的组织在整个技术栈中嵌入智能体,从面向客户的应用到内部治理系统。通过强化数据治理、减少重复工具和统一平台,AI的ROI将从理论变为现实。
上海AI实验室联合多所高校开发出VisualPRM系统,这是首个专门用于多模态推理的过程奖励模型。该系统能像老师批改作业一样逐步检查AI的推理过程,显著提升了AI在视觉推理任务上的表现。研究团队构建了包含40万样本的训练数据集和专门的评估基准,实现了在七个推理基准上的全面性能提升,即使是最先进的大型模型也获得了5.9个百分点的改进。