PEAK:AIO 声称,它利用 CXL 内存解决 AI 推理模型中 GPU 内存的局限性,而不是将 KVCache 内容卸载到 NVMe 闪存驱动器。
这家总部位于英国的 AI 与 GPU 数据基础设施专业公司表示,AI 工作负载正从 “静态提示” 发展为 “动态上下文流、模型创建流水线 以及 长运行代理”,而工作负载不断增长,使得 GPU 的高带宽内存 (HBM) 的有限容量受到压力,令 AI 任务受内存瓶颈限制。
这导致任务的工作内存内容——即 KVCache——超出 HBM 容量,令 Token 被驱逐,并在需要时必须重新计算,从而延长任务运行时间。
包括 VAST Data 推出的 VUA、WEKA 推出的 Augmented Memory Grid,以及 Pliops 推出的 XDP LightningAI PCIe-add-in 卡前端连接 NVMe SSD 等多家供应商,均已尝试通过在外部闪存存储上划分一个类似于虚拟内存交换分区的 HBM 内存区域来扩充 HBM 容量。
PEAK:AIO 正在开发一款 1RU Token 内存产品,该产品将采用 CXL 内存、 PCIe gen 5、 NVMe 以及 GPU Direct 与 RDMA 配合。
PEAK:AIO 首席 AI 策略官兼联合创始人 Eyal Lemberger 在一份声明中表示: “无论您是部署跨会话思考的代理,还是扩展到百万 Token 上下文窗口 —— 在此情况下,每个模型的内存需求可能超过 500GB —— 这款设备都能通过将 Token 历史视为内存而非存储来实现扩展。现在是让内存像计算能力一样实现横向扩展的时候了。”
PEAK:AIO 表示,其设备支持: o 会话、模型与节点间的 KVCache 重用 o 扩展上下文窗口以实现更长的大语言模型历史记录 o 通过 CXL 分层实现 GPU 内存卸载 o 以及通过 NVMe-oF 上的 RDMA 实现超低延迟访问
它宣称,通过利用 CXL 内存级性能,其实现的 Token 内存可表现得如同 RAM 而非文件;而其他供应商(包括 Pliops、 VAST 和 WEKA)则无法做到这一点。PEAK:AIO 联合创始人及首席战略官 Mark Klarzynski 表示: “这正是现代 AI 所期待的 Token 内存体系。”
据悉,该技术使 AI 工作负载开发者能够构建一个系统,以内存级延迟缓存 Token 历史、注意力图以及流数据。PEAK:AIO 表示,其方案 “与 Nvidia 的 KVCache 重用及内存回收模型直接契合”,并且 “为基于 TensorRT-LLM 或 Triton 构建的团队提供插件支持,从而以最小的集成工作加速推理过程。”
理论上,PCIe gen 5 CXL 控制器的延迟约为 200 纳秒,而通过 GPU Direct 访问 NVMe SSD 的延迟约为 1.2 毫秒(即 1,200,000 纳秒),比 CXL 内存访问的延迟长约 6,000 倍。PEAK 的 Token 内存设备能够以 <5 微秒的延迟提供高达 150 GB/秒的持续吞吐量。
Lemberger 指出: “当其他厂商试图将文件系统扭曲得像内存时,我们构建了真正表现如内存的基础设施,因为这正是现代 AI 所需要的。在大规模应用中,问题不在于保存文件,而在于能够在微秒级别让每个 Token 均可访问。这实质上是一个内存问题,而我们正是通过拥抱最新硅层技术来解决它。”
PEAK:AIO 的 Token 内存设备为软件定义型,采用现成服务器,并预计将在第三季度投入生产。
好文章,需要你的鼓励
清华大学研究团队提出了一种名为"硬负样本对比学习"的创新方法,显著提升了大型多模态模型在几何理解与推理方面的能力。通过构建图像和文本两类负样本,以及开发MMCLIP训练策略,他们的MMGeoLM模型在四个几何基准测试中表现卓越,甚至以7B参数规模与GPT-4o相媲美。实验证明,仅4K个真实图像负样本的效果就超过了100K个文本负样本,为AI细粒度视觉理解开辟了新路径。
《离散马尔可夫桥》研究提出了一种新型离散数据表示学习框架,克服了传统离散扩散模型使用固定转移矩阵的局限。该框架包含矩阵学习和分数学习两个核心组件,能够自适应学习转移率矩阵并有效重建原始数据分布。理论分析证明了其有效性和收敛性,而在Text8和CIFAR-10数据集上的实验展示了其优越性能,证明了这一方法作为离散表示学习统一框架的潜力。
这项由华盛顿大学和新加坡国立大学研究团队提出的ScaleKV技术,针对视觉自回归模型中的内存瓶颈问题提供了创新解决方案。研究发现不同变压器层具有不同的缓存需求,将它们分为需要大量历史信息的"起草者"和专注于当前细节的"精细器",实现了尺度感知的KV缓存分配。实验表明,该方法能将Infinity-8B模型的内存需求从85GB减少到8.5GB,同时保持生成质量几乎不变,为高分辨率AI图像生成的普及应用铺平了道路。
这项研究提出了一种名为INTUITOR的创新方法,让大语言模型无需外部奖励即可自主学习推理能力。研究者利用模型自身的"自我确定性"作为唯一奖励信号,替代传统需要人工标注或答案验证的方法。实验表明,该方法在数学推理上与使用标准答案的方法相当,并在代码生成等跨领域任务上展现出更好的泛化能力。这为开发能在缺乏外部验证的情况下自我提升的AI系统开辟了新途径,对未来自主学习AI具有深远影响。