Warp成立于2021年,旨在通过其技术驱动的托运商、承运商和仓库网络,帮助企业简化物流供应链并降低成本。
如今,该公司希望通过使用机器人实现仓库网络自动化,进一步提升供应链效率。
Warp联合创始人兼首席执行官Daniel Sokolovsky向TechCrunch表示,Warp一直在寻找为客户提高物流效率的方法,其客户包括沃尔玛、Gopuff和HelloFresh等企业。随着人工智能技术的进步,公司认为自动化领域存在更多机遇。
Sokolovsky说,Warp无法对供应链中的长途货运或短程配送环节进行自动化改造,因此正专注于可能改变的领域:仓库内部工作流程。
Warp首先在洛杉矶的测试仓库中安装摄像头,利用计算机视觉技术将数据转换为虚拟仓库以开始实验。
"我们实际上创建了洛杉矶设施的数字孪生或仿真环境,"Sokolovsky说。"基本上就是开始各种尝试。老实说,很多时候就是在想,如果我们这样做会怎样?如果我们那样做会怎样?如果我们做其他事情会怎样?"
他们最初的想法之一是训练人形机器人使用传统托盘搬运车,但这个方案没有成功。随后Warp开始尝试使用现成的机器人,并加装一些额外技术,取得了成功。
"我们将非常复杂的物流问题分解成许多易于理解、系统可识别和系统可处理的组件,"Sokolovsky说。"现在我们正在使用AI,无论是语音、文本、邮件、电话还是机器人技术形式,确保我们能够卸载、存储和重新装载货物。我们实际上认为可以继续推进这项工作,在不增加人员的情况下尽快实现我们的目标。"
Warp联合创始人兼首席营收官Troy Lester表示,这些机器人将帮助Warp的底层仓库合作伙伴获得优势,同时有助于降低人工成本。除了洛杉矶测试设施外,公司并不直接拥有网络中的仓库。
"他们一直向我们抱怨人员配置问题,"Lester说。"在这些设施中工作的员工也不喜欢这种工作。所以我认为有机会赋能这些企业使用机器人套件,这不仅有助于改善我们的网络,也能帮助他们与其他公司的业务变得更好。"
Warp筹集了1000万美元的A轮融资来支持这一最新发展。该轮融资由Up.Partners和Blue Bear Capital共同领投。
Warp正在测试机器人的几个不同版本,并雄心勃勃地声称将在今年开始部署。
Sokolovsky表示,Warp的洛杉矶测试设施已完全实现自动化,公司计划首先在其核心网络的仓库——洛杉矶、芝加哥、新泽西、达拉斯和迈阿密——开始部署这些机器人。Warp目前不打算在其中心网络之外销售这项技术,因为这为Warp及其底层仓库合作伙伴提供了竞争优势。
"我们不是简单地说,嘿,我们只是一家机器人公司、AI公司,为这个潜在概念花钱,而是说,不,我们实际上是一家物流公司,一直在真正影响和服务我们的客户,"Sokolovsky说。"在过去几年中,我们已经开发出了一个令人惊叹的系统和生态系统,使我们能够部署这些自动化技术。"
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。