Warp成立于2021年,旨在通过其技术驱动的托运商、承运商和仓库网络,帮助企业简化物流供应链并降低成本。
如今,该公司希望通过使用机器人实现仓库网络自动化,进一步提升供应链效率。
Warp联合创始人兼首席执行官Daniel Sokolovsky向TechCrunch表示,Warp一直在寻找为客户提高物流效率的方法,其客户包括沃尔玛、Gopuff和HelloFresh等企业。随着人工智能技术的进步,公司认为自动化领域存在更多机遇。
Sokolovsky说,Warp无法对供应链中的长途货运或短程配送环节进行自动化改造,因此正专注于可能改变的领域:仓库内部工作流程。
Warp首先在洛杉矶的测试仓库中安装摄像头,利用计算机视觉技术将数据转换为虚拟仓库以开始实验。
"我们实际上创建了洛杉矶设施的数字孪生或仿真环境,"Sokolovsky说。"基本上就是开始各种尝试。老实说,很多时候就是在想,如果我们这样做会怎样?如果我们那样做会怎样?如果我们做其他事情会怎样?"
他们最初的想法之一是训练人形机器人使用传统托盘搬运车,但这个方案没有成功。随后Warp开始尝试使用现成的机器人,并加装一些额外技术,取得了成功。
"我们将非常复杂的物流问题分解成许多易于理解、系统可识别和系统可处理的组件,"Sokolovsky说。"现在我们正在使用AI,无论是语音、文本、邮件、电话还是机器人技术形式,确保我们能够卸载、存储和重新装载货物。我们实际上认为可以继续推进这项工作,在不增加人员的情况下尽快实现我们的目标。"
Warp联合创始人兼首席营收官Troy Lester表示,这些机器人将帮助Warp的底层仓库合作伙伴获得优势,同时有助于降低人工成本。除了洛杉矶测试设施外,公司并不直接拥有网络中的仓库。
"他们一直向我们抱怨人员配置问题,"Lester说。"在这些设施中工作的员工也不喜欢这种工作。所以我认为有机会赋能这些企业使用机器人套件,这不仅有助于改善我们的网络,也能帮助他们与其他公司的业务变得更好。"
Warp筹集了1000万美元的A轮融资来支持这一最新发展。该轮融资由Up.Partners和Blue Bear Capital共同领投。
Warp正在测试机器人的几个不同版本,并雄心勃勃地声称将在今年开始部署。
Sokolovsky表示,Warp的洛杉矶测试设施已完全实现自动化,公司计划首先在其核心网络的仓库——洛杉矶、芝加哥、新泽西、达拉斯和迈阿密——开始部署这些机器人。Warp目前不打算在其中心网络之外销售这项技术,因为这为Warp及其底层仓库合作伙伴提供了竞争优势。
"我们不是简单地说,嘿,我们只是一家机器人公司、AI公司,为这个潜在概念花钱,而是说,不,我们实际上是一家物流公司,一直在真正影响和服务我们的客户,"Sokolovsky说。"在过去几年中,我们已经开发出了一个令人惊叹的系统和生态系统,使我们能够部署这些自动化技术。"
好文章,需要你的鼓励
微软高级软件工程师Alice Vinogradova将自己用SAP ABAP语言编写的向量数据库ZVDB移植到了搭载Z80处理器的经典计算机Sinclair ZX Spectrum上。她发现ABAP(1983年)和Z80(1976年)几乎是同时代产物,都诞生于内存珍贵、每个字节都很重要的计算时代。通过应用Z80优化技术,尽管时钟频率相差857倍,但代码运行速度仅慢3-6倍。她认为这些老式优化技术具有普遍适用性,在现代硬件上依然有效。
这项由东京科学技术大学等机构联合发布的研究提出了UMoE架构,通过重新设计注意力机制,实现了注意力层和前馈网络层的专家参数共享。该方法在多个数据集上显著优于现有的MoE方法,同时保持了较低的计算开销,为大语言模型的高效扩展提供了新思路。
韩国电子巨头三星宣布收购美国西雅图数字健康技术公司Xealth,进一步扩大在健康领域的布局。Xealth专注于帮助医疗专业人员将数字健康技术整合到日常实践中,与70多家数字健康技术供应商合作,应用覆盖美国500多家医院。此次收购将推动三星向连接医疗保健平台转型,结合其在传感器技术和可穿戴设备方面的优势,完善Samsung Health平台功能。
小米团队开发的MiMo-7B模型证明了AI领域"小而精"路线的可行性。这个仅有70亿参数的模型通过创新的预训练数据处理、三阶段训练策略和强化学习优化,在数学推理和编程任务上超越了320亿参数的大模型,甚至在某些指标上击败OpenAI o1-mini。研究团队还开发了高效的训练基础设施,将训练速度提升2.29倍。该成果已完全开源,为AI民主化发展提供了新思路。