非营利组织Creative Commons曾引领许可证运动,允许创作者在保留版权的同时分享作品,如今正为AI时代做准备。该组织周三宣布启动新项目CC signals,允许数据集持有者详细说明其内容如何被机器重用,例如用于训练AI模型的情况。
这一理念旨在平衡互联网的开放性和AI对更多数据的持续需求。
Creative Commons在博客文章中解释,持续的数据提取可能侵蚀互联网的开放性,导致实体将其网站围墙化或设置付费墙,而非共享数据访问权限。
CC signals项目旨在提供法律和技术解决方案,为数据控制者和AI训练使用者之间的数据集共享提供框架。
随着企业努力调整政策和服务条款,要么限制AI在其数据上进行训练,要么解释在何种程度上将用户数据用于AI相关目的,对此类工具的需求正在增加。
例如,X最初允许第三方在其公共数据上训练模型,后来又撤销了这一变更。Reddit使用其robots.txt文件(用于告知自动网络爬虫是否可以访问其网站)来限制机器人抓取其数据用于AI训练。Cloudflare正在寻求对AI机器人抓取收费的解决方案,以及混淆它们的工具。开源开发者也构建了工具来减慢和浪费那些不尊重"禁止爬取"指令的AI爬虫资源。
CC signals项目提出了不同的解决方案:一套提供多种法律执行力的工具,但都具有伦理权重,类似于今天覆盖数十亿在线开放许可创意作品的CC许可证。
Creative Commons首席执行官Anna Tumadóttir在声明中表示:"CC signals旨在维持AI时代的公共资源。正如CC许可证帮助构建开放网络一样,我们相信CC signals将有助于塑造基于互惠原则的开放AI生态系统。"
该项目目前刚开始成形。早期设计已在CC网站和GitHub页面发布。该组织正积极征求公众反馈,计划于2025年11月进行alpha版本(早期测试)发布。还将举办一系列市政厅会议收集反馈和问题。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。