7月1日消息,阿里通义实验室开源了旗下首个音频生成模型ThinkSound,该模型首次将CoT(Chain-of-Thought,思维链)应用到音频生成领域,让AI可以像专业音效师一样逐步思考,捕捉视觉细节,生成与画面同步的高保真音频。
目前,ThinkSound的代码和模型已在Github、HuggingFace、魔搭社区开源,开发者可免费下载和体验。

阿里开源音频生成模型ThinkSound
视频生成音频(V2A)技术是多媒体编辑和视频内容创作领域最重要的技术之一,但该技术的发展速度仍存在诸多技术挑战,例如业界现有的V2A技术仍缺乏对视觉对应声学细节的深入理解,导致生成的音频较为通用,甚至与关键视觉事件错位,难以满足专业创意场景中对时序和语义连贯性的严格要求。
为了解决现有视频转音频技术难以捕捉画面中动态细节和时序的难题,通义团队首次将思维链推理引入多模态大模型,可以模仿人类音效师的多阶段创作流程,实现对视觉事件与相应声音之间深度关联的精准建模,例如先分析视觉动态、再推断声学属性,最后按照时间顺序合成与环境相符的音效。不仅如此,该团队还构建了首个带思维链标注的音频数据集AudioCoT,该数据集融合了2531.8小时的多源异构数据,让模型在音频生成与编辑任务时做到“知其然、知其所以然”。
在开源的VGGSound测试集上,ThinkSound的核心指标相比MMAudio、V2A-Mappe、V-AURA等现有主流方法均实现了15%以上的提升。例如,在openl3空间中Fréchet 距离(FD)上,ThinkSound 相比 MMAudio的43.26 降至34.56(越低越好),接近真实音频分布的相似度提高了20%以上;在代表模型对声音事件类别和特征判别精准度的KLPaSST 和 KLPaNNs两项指标上分别取得了1.52和1.32的成绩,均为同类模型最佳。

在开源的VGGSound测试集上,ThinkSound多项核心指标位居第一
在MovieGen Audio Bench测试集上,ThinkSound的表现大幅领先Meta推出的音频生成模型Movie Gen Audio,展现了模型在影视音效、音频后期、游戏与虚拟现实音效生成等领域的应用潜力。

ThinkSound大幅领先Meta旗下Movie Gen Audio
目前,通义实验室已推出语音生成大模型 Cosyvoice、端到端音频多模态大模型MinMo等模型,全面覆盖语音合成、音频生成、音频理解等场景。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。