7月1日消息,阿里通义实验室开源了旗下首个音频生成模型ThinkSound,该模型首次将CoT(Chain-of-Thought,思维链)应用到音频生成领域,让AI可以像专业音效师一样逐步思考,捕捉视觉细节,生成与画面同步的高保真音频。
目前,ThinkSound的代码和模型已在Github、HuggingFace、魔搭社区开源,开发者可免费下载和体验。

阿里开源音频生成模型ThinkSound
视频生成音频(V2A)技术是多媒体编辑和视频内容创作领域最重要的技术之一,但该技术的发展速度仍存在诸多技术挑战,例如业界现有的V2A技术仍缺乏对视觉对应声学细节的深入理解,导致生成的音频较为通用,甚至与关键视觉事件错位,难以满足专业创意场景中对时序和语义连贯性的严格要求。
为了解决现有视频转音频技术难以捕捉画面中动态细节和时序的难题,通义团队首次将思维链推理引入多模态大模型,可以模仿人类音效师的多阶段创作流程,实现对视觉事件与相应声音之间深度关联的精准建模,例如先分析视觉动态、再推断声学属性,最后按照时间顺序合成与环境相符的音效。不仅如此,该团队还构建了首个带思维链标注的音频数据集AudioCoT,该数据集融合了2531.8小时的多源异构数据,让模型在音频生成与编辑任务时做到“知其然、知其所以然”。
在开源的VGGSound测试集上,ThinkSound的核心指标相比MMAudio、V2A-Mappe、V-AURA等现有主流方法均实现了15%以上的提升。例如,在openl3空间中Fréchet 距离(FD)上,ThinkSound 相比 MMAudio的43.26 降至34.56(越低越好),接近真实音频分布的相似度提高了20%以上;在代表模型对声音事件类别和特征判别精准度的KLPaSST 和 KLPaNNs两项指标上分别取得了1.52和1.32的成绩,均为同类模型最佳。

在开源的VGGSound测试集上,ThinkSound多项核心指标位居第一
在MovieGen Audio Bench测试集上,ThinkSound的表现大幅领先Meta推出的音频生成模型Movie Gen Audio,展现了模型在影视音效、音频后期、游戏与虚拟现实音效生成等领域的应用潜力。

ThinkSound大幅领先Meta旗下Movie Gen Audio
目前,通义实验室已推出语音生成大模型 Cosyvoice、端到端音频多模态大模型MinMo等模型,全面覆盖语音合成、音频生成、音频理解等场景。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。